

SureSelect Automated **Strand-Specific RNA Library Prep**

mRNA Library Prep for Illumina Paired-End **Multiplexed Sequencing**

Protocol

Version D0, July 2015

SureSelect platform manufactur SurePrint Technology

with Agilent

For Research Use Only. Not for use in diagnostic procedures.

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2015

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G9691-90030

Edition

Version D0, July 2015

Printed in USA

Agilent Technologies, Inc. 5301 Stevens Creek Blvd Santa Clara, CA 95051 USA

Acknowledgement

Oligonucleotide sequences © 2006, 2008, and 2011 Illumina, Inc. All rights reserved. Only for use with the Illumina sequencer systems and associated assays.

Technical Support

For technical product support, contact your local Agilent Support Services representative.

For US and Canada, call (800) 227-9770 (option 3,4,4). For other countries, find your support center telephone numbers at www.agilent.com/chem/contactus.

Or send an e-mail to: SureSelect.Support@agilent.com

Notice to Purchaser

For Research Use Only. Not for use in diagnostic procedures.

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties. either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Notice to Purchaser: Limited License

Use of this product is covered by one or more of the following US patents and corresponding patent claims outside the US: 6,258,569, 6,171,785, 6,127,155, 6,030,787, 5,994,056, 5,876,930, 5,804,375, 5,789,224, 5.773.258 (claims 1 and 6 only). 5.723.591. 5,677,152 (claims 1 to 23 only), 5,618,711, 5.538.848, and claims outside the US corresponding to expired US Patent No. 5,079,352. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In this Guide...

This guide describes an optimized protocol for Illumina paired-end multiplexed mRNA library preparation using the Agilent SureSelect Automated Strand-Specific Library Prep system.

This protocol is specifically developed and optimized to prepare mRNA sequencing libraries from total RNA samples. Sample processing steps are automated using the NGS Workstation.

1 Before You Begin

This chapter contains information (such as procedural notes, safety information, required reagents and equipment) that you should read and understand before you start an experiment.

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation

This chapter contains an orientation to the Agilent NGS Workstation, an overview of the SureSelect mRNA Library Prep protocol, and considerations for designing SureSelect experiments for automated processing using the Agilent NGS Workstation.

3 Sample Preparation

This chapter describes the steps to prepare strand-specific libraries from total RNA samples for mRNA sequencing on the Illumina platform.

4 Reference

This chapter contains reference information.

What's New in Version D.0

• Updated product labeling statement.

What's New in Version C.0

• Support for kits supplied with either of two indexing primer configurations.

Kits with revised index configuration (typically received December, 2014 or later) include indexing primers A01 through H06 provided in a blue plate. For kit content details see page 88. For nucleotide sequences of the 8-bp indexes in this revised configuration, see Table 49 on page 91.

Kits with original index configuration (typically received before December, 2014), include indexing primers 1–48 provided in a clear plate. For kit content details see page 92. For nucleotide sequences of the 8-bp indexes in this original configuration, see Table 54 on page 95 through Table 56 on page 97.

Content

1 Before You Begin 9

Procedural Notes10Safety Notes11Required Reagents12Required Equipment13

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation 15

About the Agilent NGS Workstation 16 About the Bravo Platform 16 VWorks Automation Control Software 20

Overview of the SureSelect RNA Library Prep Procedure 26

Experimental Setup Considerations for Automated Runs 28

Considerations for Placement of RNA Samples in 96-well Plates for
Automation 29Considerations for Equipment Setup29

PCR Plate Type Considerations 30

3 Sample Preparation 31

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA 32

Step 2. Purify first-strand cDNA using AMPure XP beads 52

Step 3. Prepare cDNA libraries for Illumina sequencing 56

Step 4. Index cDNA libraries by PCR amplification 64

Step 5. Purify amplified DNA using AMPure XP beads 73

- Step 6. Remove adaptor-dimers using AMPure XP beads 77
- Step 7. Assess Library DNA quantity and quality 80
- Step 8. Pool samples for multiplexed sequencing 82

Step 9. Prepare and analyze sequencing samples 84

Contents

4 Reference 87

Reference Information for Kits with Revised Index Configuration (indexing primers in blue plate) 88 88 Kit Contents Nucleotide Sequences of SureSelect^{XT} Indexes A01 to H12 91 Reference Information for Kits with Original Index Configuration (indexing primers in clear plate) 92 Kit Contents 92 Nucleotide Sequences of SureSelect RNA Seq Indexes-Original Kit Configuration 95 Plasticware quantities for automation protocols 98

Before You Begin

Procedural Notes 10 Safety Notes 11 Required Reagents 12 Required Equipment 13

1

Make sure you read and understand the information in this chapter and have the necessary equipment and reagents listed before you start an experiment.

NOTE

This protocol describes automated sample processing using the Agilent NGS Workstation. For non-automated sample processing procedures for Agilent's SureSelect Strand-Specific RNA Library Prep Kit for mRNA Sequencing on the Illumina platform, see publication G9691-90010.

Procedural Notes

- Certain protocol steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the Agilent NGS Workstation to allow rapid and efficient plate transfer.
- Use of Agilent's SureCycler 8800 thermal cycler and associated plasticware is recommended for optimal performance. The workflow is compatible with additional thermal cyclers, but performance should be validated before running a large number of samples. See page 30 for a list of supported PCR plate types and ensure that the thermal cycler to be used is compatible with one of the supported PCR plate types.
- Prepare and load the Agilent NGS Workstation as detailed in each of the protocol steps before initiating each automated protocol run. When loading plates in the workstation's Labware MiniHub, always place plates in the orientation shown in Figure 4 on page 36.
- To prevent contamination of reagents by nucleases, always wear powder-free laboratory gloves and use dedicated solutions and pipettors with nuclease-free aerosol-resistant tips.
- Avoid repeated freeze-thaw cycles of stock and diluted RNA and cDNA solutions. Possible stopping points, where samples may be stored at -20°C, are marked in the protocol. Do not subject the samples to multiple freeze/thaw cycles.
- When preparing master mix reagent stock solutions for use:
 - **1** Thaw the reagent vial as rapidly as possible without heating above room temperature.
 - **2** Mix on a vortex mixer, then spin in a centrifuge for 5 to 10 seconds to drive the contents off of walls and lid.
 - **3** Store vials used during an experiment on ice or in a cold block.
 - **4** Library Preparation Master Mixes should not be frozen and thawed more than five times. If you plan to use the reagents in more than five experiments, aliquot to multiple vials to minimize freeze/thaw cycles for each vial.
- In general, follow Biosafety Level 1 (BL1) safety rules.

Safety Notes

• Wear appropriate personal protective equipment (PPE) when working in the laboratory.

Required Reagents

Table 1	Required Reagents	for SureSelect	Strand Specific	RNA Library Prep	Automation
---------	--------------------------	----------------	-----------------	------------------	------------

Description	Vendor and part number
SureSelect Strand Specific RNA Reagent Kit	Agilent
lllumina platforms (ILM), 96 Samples $^{^*}$	p∕n G9691B
Actinomycin D [†]	Sigma p/n A1410
DMSO	Sigma p/n D8418
Agencourt AMPure XP Kit	Beckman Coulter Genomics
5 mL	p∕n A63880
60 mL	p/n A63881
450 mL	p/n A63882
100% Ethanol, molecular biology grade	Sigma-Aldrich p/n E7023

* Each 96-reaction kit contains sufficient reagents for 96 reactions used in runs that include at least 3 columns of samples per run.

[†] Actinomycin D should be obtained as a solid and prepared at $4 \mu g/\mu l$ concentration in DMSO no more than one month before use. See page 13 for additional information.

Required Equipment

Table 2Required Equipment

Description	Vendor and part number
Agilent NGS Workstation Option B, with VWorks software version 11.3.0.1195	Contact Agilent Automation Solutions for ordering information:
	Customerservice.automation@agilent.com
Bravo 96-well PCR plate insert (red)	Agilent p/n G5498B#13
Robotic Pipetting Tips (Sterile, Filtered, 250 μ L)	Agilent p/n 19477-022
Thermal cycler and accessories	SureCycler 8800 Thermal Cycler (Agilent p/n G8810A), 96 well plate module (Agilent p/n G8810A) and compression mats (Agilent p/n 410187) or equivalent
PCR plates compatible with selected Thermal Cycler, e.g. Agilent semi-skirted PCR plate for the SureCycler 8800 Thermal Cycler	Agilent p/n 401334
See page 30 for a list of supported PCR plates for automation protocols	
Eppendorf twin.tec full-skirted 96-well PCR plates	Eppendorf p/n 951020401 or 951020619
Thermo Scientific Reservoirs	Thermo Scientific p/n 1064156
Nunc DeepWell Plates, sterile, 1.3-mL well volume	Thermo Scientific p/n 260251
Axygen 96 Deep Well Plate, 2.2 mL, Square Well (waste reservoirs)	Axygen p/n P-2ML-SQ-C E & K Scientific p/n EK-2440
NucleoClean Decontamination Wipes	Millipore p/n 3097
Vacuum concentrator	Savant SpeedVac, model DNA120, with 96-well plate rotor, model RD2MP, or equivalent

1 Before You Begin

Required Equipment

Description	Vendor and part number
DNA Analysis Platform and Consumables	
Agilent 2100 Bioanalyzer Laptop Bundle	Agilent p/n G2943CA
Agilent 2100 Bioanalyzer Electrophoresis Set	Agilent p/n G2947CA
Agilent DNA 1000 Kit	Agilent p/n 5067-1504
OR	
Agilent 2200 TapeStation	Agilent p/n G2964AA or G2965AA
Agilent D1000 ScreenTape	Agilent p/n 5067-5582
Agilent D1000 Reagents	Agilent p/n 5067-5583
DNA LoBind Tubes, 1.5-mL PCR clean, 250 pieces	Eppendorf p/n 022431021 or equivalent
Nuclease-free 0.2 mL PCR tubes, thin-walled	Eppendorf p/n 951010006 or equivalent
P10, P20, P200 and P1000 pipettes	Pipetman P10, P20, P200, P1000 or equivalent
Ice bucket	
Powder-free gloves	
Vortex mixer	
Timer	

Table 2 Required Equipment (continued)

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation

About the Agilent NGS Workstation 16 Overview of the SureSelect RNA Library Prep Procedure 26 Experimental Setup Considerations for Automated Runs 28

This chapter contains an orientation to the Agilent NGS Workstation, an overview of the SureSelect single-stranded RNA library preparation protocol, and considerations for designing SureSelect RNA experiments for automated processing using the Agilent NGS Workstation.

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation About the Agilent NGS Workstation

About the Agilent NGS Workstation

About the Bravo Platform

The Bravo platform is a versatile liquid handler with a nine plate-location platform deck, suitable for handling 96-well, 384-well, and 1536-well plates. The Bravo platform is controlled by the VWorks Automation Control software. Fitted with a choice of seven interchangeable fixed-tip or disposable-tip pipette heads, it accurately dispenses fluids from 0.1 μ L to 250 μ L.

CAUTION

Before you begin, make sure that you have read and understand operating, maintenance and safety instructions for using your Bravo platform. Refer to the *Bravo Platform User Guide* (G5409-90006) and the *VWorks Software User Guide* (G5415-90063).

Bravo Platform Deck

The protocols in the following sections include instructions for placing plates and reagent reservoirs on specific Bravo deck locations. Use Figure 1 to familiarize yourself with the location numbering convention on the Bravo platform deck.

Figure 1 Bravo platform deck

Setting the Temperature of Bravo Deck Heat Blocks

Bravo deck positions 4 and 6 are equipped with Inheco heat blocks, used to incubate sample plates at defined temperatures during the run. Runs that include high- $(85^{\circ}C)$ or low- $(4^{\circ}C)$ temperature incubation steps may be expedited by pre-setting the temperature of the affected block before starting the run.

Bravo deck heat block temperatures may be changed using the Inheco Multi TEC Control device touchscreen as described in the steps below. See Table 3 for designations of the heat block-containing Bravo deck positions on the Multi TEC control device.

 Table 3
 Inheco Multi TEC Control touchscreen designations

Bravo Deck Position	Designation on Inheco Multi TEC Control Screen		
4	CPAC 2 1		
6	CPAC 2 2		

1 Using the arrow buttons, select the appropriate block (CPAC 2 block 1 or CPAC 2 block 2).

CPAC	2 1 <	>
Temp.	24.9°C (SET 25.0
Shaker]0200 rpm	SET

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation About the Bravo Platform

- CPAC 2 1 <>Temp. 24.9°C SETShaker 0200 rpm SET
- **2** To set the temperature of the selected block, press the SET button.

3 Using the numeral pad, enter the desired temperature. The entered temperature appears in the top, left rectangle. Once the correct temperature is displayed, press the rectangle to enter the temperature.

4 Press the Temp button until the new temperature is displayed on the SET button and until the Temp button is darkened, indicating that the selected heat block is heating or cooling to the new temperature setting. The current temperature of the block is indicated in the center of the display.

Setting the Temperature of Bravo Deck Position 9 Using the ThermoCube Device

Bravo deck position 9 is equipped with a ThermoCube thermoelectric temperature control system, used to incubate components at a defined temperature during the run. During protocols that require temperature control at position 9, you will be instructed to start and set the temperature of the ThermoCube device before starting the run.

ThermoCube temperature settings are modified using the control panel (LCD display screen and four input buttons) on the front panel of the device using the following steps.

- **1** Turn on the ThermoCube and wait for the LCD screen to display **TEMP.**
- **2** Press the **UP** or **DOWN** button to change **SET TEMP 1** to the required set point.
- **3** Press the **START** button.

The ThermoCube will then initates temperature control of Bravo deck position 9 at the displayed set point.

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation

VWorks Automation Control Software

VWorks Automation Control Software

VWorks software, included with your Agilent NGS Workstation, allows you to control the robot and integrated devices using a PC. The Agilent NGS Workstation is preloaded with VWorks software containing all of the necessary SureSelect system liquid handling protocols. General instructions for starting up the VWorks software and the included protocols is provided below. Each time a specific VWorks protocol is used in the SureSelect procedure, any settings required for that protocol are included in the relevant section of this manual.

NOTE

The instructions in this manual are compatible with VWorks software version 11.3.0.1195.

If you have questions about VWorks version compatibility, please contact service.automation@agilent.com.

Logging in to the VWorks software

- **1** Double-click the VWorks icon or the SureSelect_RNA_ILM.VWForm shortcut on the Windows desktop to start the VWorks software.
- **2** If User Authentication dialog is not visible, click **Log in** on the VWorks window toolbar.
- **3** In the User Authentication dialog, type your VWorks user name and password, and click **OK**. (If no user account is set up, contact the administrator.)

VWorks protocol and runset files

VWorks software uses two file types for automation runs, .pro (protocol) files and .rst (runset) files. Runset files are used for automated procedures in which the workstation uses more than one automation protocol during the run.

Using the SureSelect_RNA_ILM.VWForm to setup and start a run

Use the VWorks form SureSelect_RNA_ILM.VWForm, shown below, to set up and start each SureSelect automation protocol or runset.

	MiniHub	don becap			
SureSelect RNA		MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniHub Cassette 4
for Illumina sequencers	Shelf 5				
	Shelf 4		-		
Parameters	Shelf 3		-		
mRNA_Purification_v1.0.pro	Shelf 2		-	-	
AMPureXP Case: 2) Select PCR Plate labware for Thermal Cycling	Shelf 1	-			-
s) select Number of Columns of Samples 1		<position 1=""> Position 1></position>	<position 2=""></position>	<position 3=""> <pos 6:="" p="" peltier<=""></pos></position>	
Once you have loaded labware according to Workstation Setup on right, click "Run Selected Protocol" to start run. Protocol Impause Initialize all devices Full Screen Gantt Chart Elapsed Time: 00:00:00 Reset All Form Selections to Defaults		<pos 7:="" magnet<="" td=""><td><pre>c></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><td><pos 9:="" chiller<="" td=""><td>×</td></pos></td></pre></td></pos>	<pre>c></pre> <pre></pre> <pre><td><pos 9:="" chiller<="" td=""><td>×</td></pos></td></pre>	<pos 9:="" chiller<="" td=""><td>×</td></pos>	×
Information Currently Running Protocol:	Ber	ichCel	nchCel Stacker 2 Be	nchCel Stacker 3 B	enchCel Stacker 4

- **1** Open the form using the SureSelect_RNA_ILM.VWForm shortcut on your desktop.
- **2** Use the drop-down menus on the form to select the appropriate SureSelect workflow step and number of columns of samples for the run.
- **3** Once all run parameters have been specified on the form, click **Display Initial Workstation Setup.**

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation

Works Automation Control Software

4 The Workstation Setup region of the form will then display the required placement of reaction components and labware in the NGS Workstation for the specified run parameters.

	Worksta	tion Setup				
	MiniHub	0				
SureSelect RNA		MiniHub Cassette 1	MiniHub Casse	te 2 Mi	iniHub Cassette	3 MiniHub Cassette 4
for Illumina sequencers	Shelf 5	Empty Nunc DeepWell Plate	Empty Nunc DeepWell Plate	Er	mpty Nunc eepWell Plate	
	Shelf 4		Bead Binding Buffer in twin.t	ec		
Parameters	Shelf 3		Bead Elution			
1) Select Protocol to Run			Buffer in twin.t	ec		
mRNA_Purification_v1.0.pro	Shelf 2	Empty Tip Box		Be	ead Wash Buffer Nunc DeepWell	
AMPureXP Case: Not Applicable 2) Select PCR Plate labware for Thermal Cycling	Shelf 1	New Tip Box				Empty Tip Box
96 ABI PCR half skirt in Red Alum Insert 96 ABI PCR half skirt in Red Alum Insert 96 ABI PCR half skirt in Red Alum Insert 9 Select Number of Columns of Samples 1 • •		Bravo Deck <pre></pre>	oir V) r>RT <pos 5:="" 5<br="">s n 2) etic> <position< td=""><td>2> naker> 8></td><td><position 3=""> <position 3=""> <pos 6:="" p="" pelti<=""> Empty Plate labware in 2; <pos 9:="" chill<="" p=""> Nunc Master Plate (Col 1-2; Silver Insert</pos></pos></position></position></td><td>er≯RT (Set er>0°C Mix 2) on</td></position<></pos>	2> naker> 8>	<position 3=""> <position 3=""> <pos 6:="" p="" pelti<=""> Empty Plate labware in 2; <pos 9:="" chill<="" p=""> Nunc Master Plate (Col 1-2; Silver Insert</pos></pos></position></position>	er≯RT (Set er>0°C Mix 2) on
Information Currently Running Protocol:	Ber	nchCel E	3enchCel Stacker 2 Empty	Bench	Cel Stacker 3	BenchCel Stacker 4

5 After verifying that the NGS Workstation has been set up correctly, click **Run Selected Protocol**.

Error messages encountered at start of run

After starting the run, you may see the error messages displayed below. When encountered, make the indicated selections and proceed with the run. Encountering either or both of these error messages is not indicative of a problem with the NGS workstation or your run setup.

1 If you encounter the G-axis error message shown below, select **Ignore** and Continue, leaving device in current state.

Bravo - 1 Error	
There appears to be a plate present in, or in front of the gripper's plate presence sensor. - Choose "Retry" to check the plate presence sensor again. - Choose "Ignore" to continue to home the G axis. Please note that any plate currently held by the gripper will be dropped. - Choose "Abort" to cancel initialization.	
Diagnostics Retry Ignore and Continue, leaving device in current state Abort	
Add to Error Library	

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation

Works Automation Control Software

2 If you encounter the W-axis error message shown below, select Retry.

Bravo - 1 Error	
Please verify that it is safe to home the W-axis, the aspirate/dispense axis). If there is fluid in the tips you may want to manually home the W-axis in diagnostics over a waste position. - Choose "Retry" to continue homing the W-axis. - Choose "Ignore" to leave the W-axis unhomed. - Choose "Abort" to cancel initialization.	^ (X)
Diagnostics Retry Ignore and Continue, leaving device in current state Abort	
Add to Erro	r Library

Verifying the Simulation setting

VWorks software may be run in simulation mode, during which commands entered on screen are not completed by the NGS workstation. If workstation devices do not respond when you start a run, verify the simulation mode status in VWorks using the following steps.

 Verify that Simulation is off is displayed on the status indicator (accessible by clicking View > Control Toolbar).

2 If the indicator displays **Simulation is on,** click the status indicator button to turn off the simulation mode.

If you cannot see the toolbar above the SureSelect VWorks form, click the **Full Screen** button to exit full screen mode. If the toolbar is still not visible, right-click on the form and then select **Control Toolbar** from the menu.

Finishing a protocol or runset

The window below appears when each run is complete. Click **Yes** to release the BenchCel racks to allow removal of components used in the current run in preparation for the next .pro or .rst run.

.....

NOTE

2 Using the Agilent NGS Workstation for SureSelect RNA Library Preparation Overview of the SureSelect RNA Library Prep Procedure

Overview of the SureSelect RNA Library Prep Procedure

Figure 2 summarizes the SureSelect workflow for RNA samples to be sequenced using the Illumina paired-read sequencing platform. For each sample to be sequenced, an individual cDNA library is prepared. The samples are then tagged by PCR with an index sequence. Depending on the capacity of the sequencing platform, up to 48 samples can be pooled and sequenced in a single lane using the multiplex index tags that are provided with the SureSelect Strand-Specific RNA Library Prep kit.

Figure 2 Overall sequencing sample preparation workflow

Table 4 summarizes how the VWorks protocols are integrated into the Strand-Specific RNA Library Prep workflow. See the Sample Preparation chapter for complete instructions for use of the VWorks protocols for sample processing.

Workflow Step	VWorks Protocols Used for Agilent NGS Workstation automation
 Purify poly(A) RNA using oligo(dT) beads Chemically fragment the poly(A) RNA Synthesize first-strand cDNA 	mRNA_Purification_v1.0.pro
Purify first-strand cDNA using AMPure XP beads	AMPureXP_v1.1.pro:First Strand
 Synthesize second-strand cDNA Repair DNA ends Purify end-repaired DNA Adenylate DNA 3'-ends Ligate adaptors Purify adaptor-ligated DNA 	LibraryPrep_RNASeq_ILM_v1.1.rst
Amplify adaptor-ligated cDNA library using indexing primers	TranscriptomePCR_ILM_v1.0.pro
Purify indexed library amplicons using AMPure XP beads	AMPureXP_v1.1.pro:Transcriptome PCR
Remove adaptor-dimers using AMPure XP beads	AMPureXP_v1.1.pro:Transcriptome Dimers

Table 4	Overview of VWorks	protocols and runsets	used during the workflow
			<u>u</u>

Experimental Setup Considerations for Automated Runs

Agilent SureSelect Automated Strand-Specific RNA Library Prep runs may include 1, 2, 3, 4, 6, or 12 columns (equivalent to 8, 16, 24, 32, 48, or 96 wells) of RNA samples to be prepared for sequencing on the Illumina platform. Plan your experiments using complete columns of samples.

Number of Columns Processed	Total Number of Samples Processed	
1	8	
2	16	
3	24	
4	32	
6	48	
12	96	

Table 5 Columns to Samples Equivalency

The number of columns or samples that may be processed using the supplied reagents will depend on the experimental design. For greatest efficiency of reagent use, plan experiments using at least 3 columns per run. Each 96-reaction kit contains sufficient reagents for 96 reactions configured as 4 runs of 3 columns of samples per run.

Considerations for Placement of RNA Samples in 96-well Plates for Automation

- The Agilent NGS Workstation processes samples column-wise beginning at column 1. RNA samples should be loaded into 96-well plates column-wise, in well order A1 to H1, then A2 to H2, ending with A12 to H12. When processing partial runs with <12 sample columns, do not leave empty columns between sample columns; always load the plate using the left-most column that is available.
- For sample indexing by PCR (see Figure 2), you will need to prepare a separate plate containing the indexing primers. Assign the wells to be indexed with their respective indexing primers during experimental design.

CAUTION This guide includes information for kits containing two different sets of indexing primers. Verify that you are referencing the information appropriate for your kit version before you proceed.

Kits with indexing primers supplied in a blue plate include 8-bp indexes A01 through H06. See page 90 through page 91 for indexing primer A01–H06 plate map and nucleotide sequence information.

Kits with indexing primers supplied in a clear plate include 8-bp indexes 1 through 48. See page 94 through page 97 for indexing primer 1–48 plate map and nucleotide sequence information.

Protocol steps for indexing using primers provided in either configuration are identical.

Considerations for Equipment Setup

- Some workflow steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the Agilent NGS Workstation to allow rapid and efficient plate transfer.
- Several workflow steps require that the sample plate be sealed using the PlateLoc thermal microplate sealer included with the Agilent NGS Workstation, and then centrifuged to collect any dispersed liquid. To maximize efficiency, locate the centrifuge in close proximity to the Agilent NGS Workstation.

PCR Plate Type Considerations

Automation protocols include several liquid-handling steps in which reagents are dispensed to PCR plates in preparation for transfer to a thermal cycler. For these steps you must specify the PCR plate type to be used on the SureSelect_RNA_ILM.VWForm to allow correct configuration of the liquid handling components for the PCR plate type. Before you begin the automation protocol, make sure that you are using a supported PCR plate type. The PCR plate type to be used in the protocol is specified using the menu below. Vendor and part number information is provided for the supported plate types in Table 6.

Select PCR Plate labware for Thermal Cycling

	96 ABI PCR half skirt in Red Alum Insert 🔹
3)	96 ABI PCR half skirt in Red Alum Insert
1	96 Agilent Semi-skirted PCR in Red Alum Insert
	96 Eppendorf Twin.tec half skirt PCR in Red Alum Insert
4)	96 Eppendorf Twin.tec PCR in Red Alum Insert

Table 6 Ordering information for supported PCR plates

Description in VWorks menu	Vendor and part number
96 ABI PCR half-skirted plates (MicroAmp Optical plates)	Life Technologies p/n N8010560
96 Agilent semi-skirted PCR plate	Agilent p/n 401334
96 Eppendorf Twin.tec half-skirted PCR plates	Eppendorf p/n 951020303
96 Eppendorf Twin.tec PCR plates (full-skirted)	Eppendorf p/n 951020401 or 951020619

Sample Preparation

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA 32

Step 2. Purify first-strand cDNA using AMPure XP beads52Step 3. Prepare cDNA libraries for Illumina sequencing56Step 4. Index cDNA libraries by PCR amplification64Step 5. Purify amplified DNA using AMPure XP beads73Step 6. Remove adaptor-dimers using AMPure XP beads77Step 7. Assess Library DNA quantity and quality80Step 8. Pool samples for multiplexed sequencing82Step 9. Prepare and analyze sequencing samples84

This section contains instructions for RNA library preparation specific to the Illumina paired-read sequencing platform and to automated processing using the Agilent NGS Workstation.

For each sample to be sequenced, individual library preparations are performed in separate wells of a 96-well plate. The samples are then indexed by PCR amplification allowing multiplexing of up to 48 samples for sequencing on Illumina platforms.

Refer to Illumina's protocol *Preparing Samples for Paired-End Sequencing* (p/n 1005361), or the appropriate Illumina protocol for more information.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

In this step, automation protocol mRNA_Purification_v1.0.pro is used to complete multiple steps of the RNA Library Preparation workflow. First, poly(A) RNA is purified from total RNA using two serial rounds of binding to oligo(dT) magnetic particles. After purification, the poly(A) RNA is chemically-fragmented to the appropriate size and then is converted to first-strand cDNA.

Total RNA samples containing 50 ng to 4 μ g RNA are suitable for the mRNA library preparation automation protocol. Each total RNA sample must be prepared for the run in 25 μ L of nuclease-free water.

For optimal performance, total RNA samples should have an RNA Integrity Number (RIN) of 8 or more, based on analysis using Agilent's 2100 Bioanalyzer.

A workstation operator must be present during this automation protocol to transfer plates between the workstation, which completes most liquid handling steps, and the thermal cycler, which is used for several incubation steps. In addition, the operator must prepare and dispense a master mix immediately before it is used in the automation protocol (see step 30 on page 47).

Prepare the workstation

- **1** Open the SureSelect setup form using the SureSelect_RNA_ILM.VWForm shortcut on your desktop.
- **2** Log in to the VWorks software.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **4** Clear the Labware MiniHub and BenchCel of all plates and tip boxes.

NOTE

Sample Preparation 3

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Prepare reagents for the run

5 Bring the reagents listed in Table 7 to room temperature.

 Table 7
 Reagents for poly(A) RNA purification and RNA fragmentation

Kit Component	Storage Location	Where Used in Protocol
Oligo(dT) Microparticles	RNA Library Prep Kit Box 2, 4°C	page 34
RNA Seq Bead Washing Buffer	RNA Library Prep Kit Box 2, 4°C	page 34
RNA Seq Bead Elution Buffer	RNA Library Prep Kit Box 2, 4°C	page 34
RNA Seq Bead Binding Buffer	RNA Library Prep Kit Box 2, 4°C	page 34
RNA Seq Fragmentation Mix	RNA Library Prep Kit Box 1, –20°C	page 35

6 Locate or prepare a stock solution of $4 \mu g/\mu L$ Actinomycin D in DMSO. A 3- μL aliquot of this DMSO stock solution will be used on page 47 to prepare a fresh dilution of 120 ng/ μL Actinomycin D in water for the run.

CAUTION

The 4 μ g/ μ L Actinomycin D in DMSO stock solution must be prepared less than one month prior to use and stored in aliquots at -20° C, protected from light. To ensure strand-specificity, you must prepare the 120 ng/ μ L Actinomycin D dilution immediately before use on page 47.

Prepare the RNA samples source plate

7 Place $25 \ \mu$ L of each RNA sample (0.05–4 μ g RNA in nuclease-free water) into the wells of a 96-well Eppendorf twin.tec plate. Load samples into the plate column-wise, in well order A1 to H1, then A2 to H2, ending with A12 to H12 for processing on the Agilent NGS Workstation.

NOTE

SureSelect Strand-Specific RNA Library Prep runs may include 1, 2, 3, 4, 6, or 12 columns of the plate. See Using the Agilent NGS Workstation for SureSelect RNA Library Preparation for additional sample placement considerations.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Prepare the oligo(dT) beads and mRNA purification source plates

When preparing each of the source plates below, add the indicated amount of reagent to wells of the source plate corresponding to the total RNA sample wells in step 7 above. For example, for 3-column runs, fill source well plate wells A1 to H3, but leave wells A4 to H12 empty.

- 8 Prepare the oligo(dT) beads source plate.
 - **a** Vortex the Oligo(dT) Microparticles until the suspension appears homogeneous and consistent in color. If bead aggregates are still present after vortexing, mix thoroughly by pipetting up and down until the suspension appears homogeneous.
 - **b** In a PCR plate that is compatible with the thermal cycler to be used in the run, place $25 \ \mu$ L of the homogeneous Oligo(dT) bead suspension into each well to be used for sample purification.
- 9 Prepare the Bead Binding Buffer source plate. Place 30 μL of RNA Seq Bead Binding Buffer into wells of a 96-well Eppendorf twin.tec plate. Fill each well that corresponds to an RNA sample well.
- 10 Prepare the Bead Elution Buffer source plate. Place 30 µL of RNA Seq Bead Elution Buffer into wells of a 96-well Eppendorf twin.tec plate. Fill each well that corresponds to an RNA sample well.
- 11 Prepare the Bead Wash Buffer source plate. Place $410 \ \mu L$ of RNA Seq Bead Washing Buffer into wells of a Nunc DeepWell plate. Fill each well that corresponds to an RNA sample well.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Prepare the master mix source plate

12 Prepare the master mix source plate by adding the appropriate volume of RNA Seq Fragmentation Mix (see Table 8) to all wells of Column 1 of a Nunc DeepWell plate. The configuration of the source plate is shown in Figure 3.

Master Mix Solution	Position on Source Plate	Volume of Master Mix added per Well of Nunc Deep Well Source Plate					
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
RNA Seq Fragmentation Mix	Column 1 (A1-H1)	28.5 µL	47.5 μL	66.5 μL	85.5 μL	123.5 µL	247.0 µL

Table 8	Preparation of the Master Mix So	urce Plate for mRNA	Purification v1.0).pro
---------	----------------------------------	---------------------	-------------------	-------

3 Sample Preparation

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Load the Agilent NGS Workstation

13 Load the Labware MiniHub according to Table 9, using the plate orientations shown in Figure 4.

Table 9	Initial	MiniHub	configuration	for mRNA	Purification	v1.0.p	oro

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty Nunc DeepWell plate	Empty Nunc DeepWell plate	Empty Nunc DeepWell plate	Empty
Shelf 4	Empty	Bead Binding Buffer in twin.tec plate	Empty	Empty
Shelf 3	Empty	Bead Elution Buffer in twin.tec plate	Empty	Empty
Shelf 2	Empty tip box	Empty	Bead Wash Buffer in Nunc DeepWell plate	Empty
Shelf 1 (Bottom)	New tip box	Empty	Empty	Empty tip box

Figure 4 Agilent Labware MiniHub plate orientation. For Thermo Scientific reservoirs, place the notched corner facing the center of the hub.
Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

14 Load the Bravo deck according to Table 10.

 Table 10
 Initial Bravo deck configuration for mRNA_Purification_v1.0.pro

Location	Content
1	Empty waste reservoir (Axygen 96 Deep Well Plate, square wells)
4	Oligo(dT) beads in PCR plate seated on red insert (PCR plate type must be specified on setup form under step 2)
6	Empty PCR plate seated on red insert (PCR plate type must be specified on setup form under step 2)
7	Total RNA samples in twin.tec plate
9	Master Mix Source Plate seated on silver insert (Nunc DeepWell; see Figure 3 on page 35 for column content)

15 Load the BenchCel Microplate Handling Workstation according to Table 11.

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	Empty	Empty	Empty
2	2 Tip boxes	Empty	Empty	Empty
3	3 Tip boxes	Empty	Empty	Empty
4	3 Tip boxes	Empty	Empty	Empty
6	5 Tip boxes	Empty	Empty	Empty
12	9 Tip boxes	Empty	Empty	Empty

 Table 11
 Initial BenchCel configuration for mRNA_Purification_v1.0.pro

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Run VWorks protocol mRNA_Purification_v1.0.pro

- 16 On the SureSelect setup form, under Select Protocol to Run, select mRNA_Purification_v1.0.pro.
- **17** Under **Select PCR plate labware for Thermal Cycling**, select the specific type of PCR plate that was loaded on Bravo deck positions 4 and 6. The plate type selected must be compatible with the thermal cycler to be used for incubation steps during the protocol.

NOTE

During run setup, be sure to use the plate type selected from this menu at positions 4 and 6 of the Bravo deck. In addition, when the workstation issues prompts to add plates to postion 4 or 6 during the run, use only the same PCR plate type specified here.

18 Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

19 Click **Display Initial Workstation Setup**.

20 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

[Vorksta MiniHub	tion Setup			-
	- In the local	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
	Shelf 5				
~	ShelfA	سيرس بسيس		and many and	السار

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

21 When verification is complete, click **Run Selected Protocol**.

NOTE

If workstation devices do not respond when you start the run, but activity is recorded in the Log, verify that VWorks is not running in Simulation mode. See page 25 for more information.

Running the mRNA_Purification_v1.0.pro protocol takes approximately 90 minutes, including four incubation periods on the thermal cycler.

During the automation protocol run, a workstation operator must be present to transfer plates between the workstation and thermal cycler when prompted, as detailed on the following pages.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

RNA Denaturation	
Get plate from position 4, seal at 165°C for 1.0s. Place in thermal cycler using the following program:	
65°C for 5 minutes 4°C for 1 minute 20°C for 5 minutes 20°C Hold	
When finished, dick Continue below.	1
User data entry:	
Pause and Diagnose Continue	

22 When the workstation has finished combining the RNA samples with the oligo(dT) beads, you will be prompted by VWorks as shown below.

- **a** Remove the plate from position 4 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.
- **b** Briefly spin the plate in a centrifuge or mini-plate spinner to collect the liquid without pelleting the beads.
- **c** Transfer the PCR plate to a thermal cycler (with the heated lid ON) and run the RNA denaturation + bead binding program shown in Table 12. After transferring the plate, click **Continue** on the VWorks screen.

 Table 12
 Thermal cycler program for RNA denaturation and RNA-bead binding

Step	Temperature	Time
Step 1	65°C	5 minutes
Step 2	4°C	1 minute
Step 3	20°C	5 minutes
Step 4	20°C	Hold

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

23 After the thermal cycler reaches the 20°C Hold step, and when prompted by the dialog below, transfer the RNA sample plate to position 4 of the Bravo deck, seated in the red insert. Carefully unseal the plate, then click **Continue**.

Post RNA Denaturation	Jose Second
Once the incubation is confrom thermal cycler and	omplete, get plate place at position 4.
Carefully remove the se	al.
When finished, click Con	tinue below.
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

24 When the workstation has finished collecting and washing the bead-bound RNA samples, you will be prompted by VWorks as shown below.

Replace Plate		
Remove the plate from position 4.		
Replace the plate at position 4 with a new plate. Ensure that the same plate type is used.		
When finished, click Continue below.		
User data entry:		
Pause and Diagnose Continue		

- **a** Remove and discard the PCR plate from position 4 of the Bravo deck.
- **b** Place a fresh PCR plate at position 4, seated in the red insert. The PCR plate type added here must be the same plate type as the one removed and as was specified during the run setup.
- c After positioning the plate, click Continue on the VWorks screen.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

25 When the workstation has finished collecting and washing the bead-bound RNA samples, you will be prompted to transfer the plate to the thermal cycler for the RNA Elution step as shown below.

RNA Elution	Jack Brann
Get plate from position 4 1.0s.	, seal at 165℃ for
Place in thermal cycler us program:	ing the following
80°C for 2 minutes 4°C for 1 minute 4°C Hold	
When finished, dick Cont	tinue below.
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

- **a** Remove the plate from position 4 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.
- **b** Briefly spin the plate in a centrifuge or mini-plate spinner to collect the liquid without pelleting the beads.
- **c** Transfer the PCR plate to a thermal cycler (with the heated lid ON) and run the RNA elution program shown in Table 13. After transferring the plate, click **Continue** on the VWorks screen.

 Table 13
 Thermal cycler program for RNA elution

Step	Temperature	Time
Step 1	80°C	2 minutes
Step 2	4°C	1 minute
Step 3	4°C	Hold

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

26 After the thermal cycler reaches the 4°C Hold step and when prompted by the dialog below, transfer the RNA sample plate to position 4 of the Bravo deck, seated in the red insert. Carefully unseal the plate, then click **Continue**.

F	Post RNA Elution	
	Once the incubation is complete, get plate from thermal cycler and place at position 4.	
	Carefully remove the seal.	l
Ì	When finished, click Continue below.	
	User data entry:	
	Pause and Diagnose Continue	

27 The workstation adds RNA Seq Bead Binding Buffer to the eluted RNA samples and then holds the samples at room temperature for 5 minutes to allow the poly(A) RNA to re-bind the beads.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

28 When the workstation has finished the collecting and washing the bound RNA samples in this second round of purification, you will be prompted by VWorks as shown below. Remove and discard the PCR plate from position 4, then click **Continue**.

Remove Plate	Jon Brane
Remove the plate from	position 4.
When finished, click Con	tinue below.
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

29 The workstation adds RNA Seq Fragmentation Mix to the bead-bound RNA samples in preparation for the RNA fragmentation step. When the workstation has finished, you will be prompted by VWorks as shown below.

RNA Fragmentation	Jon Bours	
Get plate from position 1.0s.	6, seal at 165℃ for	
Place in thermal cycler u program:	ising the following	
94°C for 8 minutes 4°C Hold		
When finished, click Continue below.		
User data entry:		
Pause and Diagnose	<u>C</u> ontinue	

- **a** Remove the plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.
- **b** Briefly spin the plate in a centrifuge or mini-plate spinner to collect the liquid.
- **c** Transfer the PCR plate to a thermal cycler (with the heated lid ON) and run the RNA fragmentation program shown in Table 14. After transferring the plate, click **Continue** on the VWorks screen.

 Table 14
 Thermal cycler program for RNA fragmentation

Step	Temperature	Time
Step 1	94°C	8 minutes
Step 2	4°C	Hold

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

- **30** During the 8-minute incubation step, prepare the reagents and workstation for first-strand cDNA synthesis:
 - **a** When prompted by the dialog below, place a fresh PCR plate (use the plate type specified during the run setup) at position 6, seated in the red insert. Proceed immediately to step b, below.

Add Plate & Add 1st-St	rand MM				
Place a new plate at po that the same plate typ	Place a new plate at position 6 and ensure that the same plate type is used.				
Apply the appropriate a Strand cDNA Master Mix to column 2 of the mast position 9.	mount of First < with Actinomycin D er mix plate at				
When finished, dick Cor	ntinue below.				
User data entry:					
Pause and Diagnose	<u>C</u> ontinue				

- **b** Prepare a fresh 120 ng/ μ L Actinomycin D dilution in water from a stock solution of 4 μ g/ μ L Actinomycin D in DMSO, according to Table 15.
- Table 15Preparation of 120 ng/µl Actinomycin D

Reagent	Volume for up to 12-column run (includes excess)
Actinomycin D (4 µg/µl in DMSO)	3 µL
Nuclease-free water	97 µL
Total	100 µL

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

c Prepare the appropriate amount of RNA Seq First Strand Master Mix + Actinomycin D mixture, on ice, according to the table below.

CAUTION

SureSelect Strand Specific RNA Library Prep master mixes are viscous. Mix thoroughly by vortexing before removing an aliquot for use and after combining the master mixes with other solutions.

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
RNA Seq First Strand Master Mix	8.0 µL	98.4 µL	196.8 µL	262.4 μL	360.8 µL	492.0 µL	918.4 µL
Actinomycin D (120 ng∕µl in H ₂ O)	0.5 µL	6.2 μL	12.3 µL	16.4 µL	22.6 µL	30.8 µL	57.4 μL
Total Volume	8.5 µL	104.6 µL	209.1 µL	278.8 μL	383.4 μL	522.8 μL	975.8 μL

Table 16 Preparation of First Strand Master Mix/Actinomycin D mixture

d Add the volume listed in Table 17 of the First Strand Master Mix + Actinomycin D mixture to column 2 of the Master Mix source plate at position 9 of the Bravo deck. The final configuration of the source plate is shown in Figure 6. After adding the master mix to the source plate, click **Continue** on the VWorks screen.

 Table 17
 Preparation of the Master Mix Source Plate for mRNA_Purification_v1.0.pro

Master Mix Solution	Position on Source Plate	Volume of Master Mix added per Well of Nunc Deep Well Source Plate					
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
RNA Seq First Strand Master Mix + Actinomycin D mixture	Column 2 (A2-H2)	12.0 µL	25.1 μL	33.8 µL	46.9 µL	64.3 µL	120.9 µL

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

31 With the RNA sample plate still on the thermal cycler, the workstation prepares the remaining components for first-strand cDNA synthesis. When the workstation has finished, you will be prompted by VWorks as shown below.

Post RNA Fragmentation
Once the incubation is complete, get plate from thermal cycler and briefly spin down to drive condensation from the inner walls of the wells to the well bottoms.
Place the plate at position 4 and carefully remove the seal.
When finished, click Continue below.
User data entry:
Pause and Diagnose Continue

- **a** After the thermal cycler reaches the 4°C Hold step for the RNA fragmentation program (Table 14), remove the plate from the thermal cycler and briefly spin in a centrifuge or mini-plate spinner to collect the liquid.
- **b** Place the RNA sample plate on position 4 of the Bravo deck, seated in the red insert.
- c Carefully unseal the plate, then click Continue.

Step 1. Purify poly(A) RNA/fragment RNA/synthesize first strand cDNA

32 The workstation removes the fragmented RNA samples from the bead-containing wells and combines the samples with RNA Seq First Strand Master Mix + Actinomycin D. When the workstation has finished, you will be prompted by VWorks as shown below.

1st-Strand cDNA Synthesis
Get plate from position 6, seal at 165°C for 1.0s.
Place in thermal cycler using the following program:
25℃ for 10 minutes 37℃ for 40 minutes 4℃ Hold
When finished, click Continue below.
User data entry:

- **a** Remove the plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.
- **b** Briefly spin the plate in a centrifuge or mini-plate spinner to collect the liquid.
- **c** Transfer the PCR plate to a thermal cycler (with the heated lid ON) and run the first-strand cDNA synthesis program shown in Table 18. After transferring the plate, click **Continue** on the VWorks screen.

Table 18 Thermal cycler program for first-strand cDNA synthesis

Step	Temperature	Time
Step 1	25°C	10 minutes
Step 2	37°C	40 minutes
Step 3	4°C	Hold

Step 2. Purify first-strand cDNA using AMPure XP beads

Step 2. Purify first-strand cDNA using AMPure XP beads

In this step, the Agilent NGS Workstation transfers AMPure XP beads and first-strand cDNA samples to a Nunc DeepWell plate and then collects and washes the bead-bound DNA.

Prepare the workstation and reagents

- 1 Leave tip boxes on shelves 1 and 2 in casette 1 of the Labware MiniHub from the previous mRNA_Purification_v1.0.pro run. Otherwise, clear the remaining positions of the MiniHub and BenchCel of plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a NucleoClean decontamination wipe.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **4** Let the AMPure XP beads come to room temperature for at least 30 minutes. *Do not freeze the beads at any time.*
- **5** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color.
- **6** Prepare a Nunc DeepWell source plate for the beads by adding 51 μL of homogeneous AMPure XP beads per well, for each well to be processed.
- 7 Prepare a Thermo Scientific reservoir containing 15 mL of nuclease-free water.
- 8 Prepare a separate Thermo Scientific reservoir containing 45 mL of freshly-prepared 70% ethanol.

Step 2. Purify first-strand cDNA using AMPure XP beads

9 Load the Labware MiniHub according to Table 19, using the plate orientations shown in Figure 4.

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty Nunc DeepWell plate	Empty	Empty	Empty
Shelf 4	Empty	Empty	Empty	Empty
Shelf 3	Empty	Empty Eppendorf twin.tec Plate	Empty	Empty
Shelf 2	Waste tip box (retained from mRNA_Purification protocol) [*]	Nuclease-free water reservoir from step 7	AMPure XP beads in Nunc DeepWell plate from step 6	Empty
Shelf 1 (Bottom)	Clean tip box (retained from mRNA_Purification protocol)*	70% ethanol reservoir from step 8	Empty	Empty tip box

 Table 19
 Initial MiniHub configuration for AMPureXP_v1.1.pro:First Strand

* The tip boxes retained in Cassette 1 are not shown on the VWorks Workstation Setup table. These tip boxes are not used in AMPureXP_v1.1.pro:First Strand but are used in a later protocol. This labware should be retained in the MiniHub to ensure that empty and full tip positions are properly defined for the subsequent protocol.

10 Load the Bravo deck according to Table 20.

	. .
Location	Content
1	Empty waste reservoir (Axygen 96 Deep Well Plate, square wells)
9	First-strand cDNA samples in PCR plate seated on red insert (PCR plate type

must be specified on setup form under step 2)

 Table 20
 Initial Bravo deck configuration for AMPureXP_v1.1.pro:First Strand

Step 2. Purify first-strand cDNA using AMPure XP beads

11 Load the BenchCel Microplate Handling Workstation according to Table 21.

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	Empty	Empty	Empty
2	1 Tip box	Empty	Empty	Empty
3	2 Tip boxes	Empty	Empty	Empty
4	2 Tip boxes	Empty	Empty	Empty
6	3 Tip boxes	Empty	Empty	Empty
12	6 Tip boxes	Empty	Empty	Empty

 Table 21
 Initial BenchCel configuration for AMPureXP v1.1.pro:First Strand

Run VWorks protocol AMPureXP_v1.1.pro:First Strand

- 12 On the SureSelect setup form, under Select Protocol to Run, select AMPureXP_v1.1.pro:First Strand.
- **13** Under **Select PCR plate labware for Thermal Cycling**, select the specific type of PCR plate containing the cDNA samples at position 9.
- **14** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

15 Click Display Initial Workstation Setup.

16 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

17 When verification is complete, click **Run Selected Protocol**.

Running the AMPureXP_v1.1.pro:First Strand protocol takes approximately 45 minutes. During this time, you can prepare the purification reagents for the Library Prep automation protocol, as described on page 57.

Once the AMPureXP_v1.1.pro:First Strand protocol is complete, the purified cDNA samples are located in the Eppendorf plate at position 7 of the Bravo deck. Proceed immediately to "Step 3. Prepare cDNA libraries for Illumina sequencing" on page 56.

Step 3. Prepare cDNA libraries for Illumina sequencing

This step is automated using the LibraryPrep_RNASeq_ILM_v1.1.rst runset. During the runset, the Agilent NGS Workstation completes second-strand cDNA library synthesis and the end modification steps required for sequencing, including end-repair, A-tailing, and adaptor ligation. After certain modification steps, the Agilent NGS Workstation purifies the prepared cDNA using AMPure XP beads.

This step uses the SureSelect^{XT} RNA Reagent Kit components listed in Table 22 in addition to the purification reagents prepared for use on page 57. Thaw each reagent vial and keep on ice. Vortex each vial for 5 seconds to mix before use.

Kit Component	Storage Location	Where Used
RNA Seq Second Strand + End Repair Enzyme Mix	SureSelect Strand-Specific RNA Library Prep Kit, ILM, Box 1, –20°C	page 58
RNA Seq Second Strand + End Repair Oligo Mix	SureSelect Strand-Specific RNA Library Prep Kit, ILM, Box 1, –20°C	page 58
SureSelect Ligation Master Mix	SureSelect Strand-Specific RNA Library Prep Kit, ILM, Box 1, –20°C	page 58
SureSelect Oligo Adaptor Mix	SureSelect Strand-Specific RNA Library Prep Kit, ILM, Box 1, –20°C	page 58
RNA Seq dA Tailing Master Mix	SureSelect Strand-Specific RNA Library Prep Kit, ILM, Box 1, –20°C	page 59

 Table 22
 Reagents for automation runset LibraryPrep_RNASeq_ILM_v1.1.rst

CAUTION

SureSelect Strand Specific RNA Library Prep master mixes are viscous. Mix thoroughly by vortexing before removing an aliquot for use and after combining the master mixes with other solutions.

3

Prepare the workstation

- 1 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **2** Leave tip boxes on shelves 1 and 2 in cassette 1 of the Labware MiniHub from the previous mRNA_Purification_v1.0.pro run. Otherwise, clear the remaining MiniHub and BenchCel positions of plates and tip boxes.
- 3 Pre-set the temperature of Bravo deck position 4 to 14°C and of position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. On the control touchscreen, Bravo deck positions 4 corresponds to CPAC 2, position 1, while deck position 6 corresponds to CPAC 2, position 2.

Prepare the purification reagents

- **4** Verify that the AMPure XP bead suspension is at room temperature. *Do not freeze the beads at any time.*
- **5** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color.
- **6** Prepare a Nunc DeepWell source plate for the beads by adding 160 μL of homogeneous AMPure XP beads per well, for each well to be processed.
- 7 Prepare a Thermo Scientific reservoir containing 20 mL of nuclease-free water.
- 8 Prepare a separate Thermo Scientific reservoir containing 150 mL of freshly-prepared 70% ethanol.

3

Step 3. Prepare cDNA libraries for Illumina sequencing

Prepare the master mix source plate

9 Prepare the appropriate amount of RNA Seq Second Strand + End Repair Master Mix according to Table 23 below.

 Table 23
 Preparation of RNA Seq Second Strand + End Repair Master Mix for LibraryPrep_RNASeq_ILM_v1.1.rst

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
RNA Seq Second Strand + End Repair Enzyme Mix	25.0 µL	307.5 μL	615 µL	820 µL	1127.5 µL	1640 μL	3075 μL
RNA Seq Second Strand + End Repair Oligo Mix	5.0 μL	61.5 µL	123 µL	164 µL	225.5 μL	328 µL	615 μL
Total Volume	30 µL	369 µL	738 µL	984 µL	1353 µL	1968 µL	3690 µL

10 Prepare the appropriate amount of Adaptor Ligation Master Mix, containing the SureSelect Ligation Master Mix and the adaptors, according to Table 24 below.

 Table 24
 Preparation of Adaptor Ligation Master Mix for LibraryPrep_RNASeq_ILM_v1.1.rst

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2.5 μL	30.8 µL	61.5 µL	82.0 µL	112.8 µL	164.0 µL	307.5 μL
SureSelect Ligation Master Mix	5.0 µL	61.5 μL	123.0 µL	164.0 µL	225.5 μL	328.0 µL	615.0 μL
SureSelect Oligo Adaptor Mix	5.0 µL	61.5 μL	123.0 µL	164.0 µL	225.5 μL	328.0 µL	615.0 µL
Total Volume	12.5 µL	153.8 µL	307.5 µL	410.0 µL	563.8 µL	820.0 µL	1537.5 µL

11 Using the same Nunc DeepWell master mix source plate that was used for the mRNA_Purification_v1.0.pro run, prepare the Library Prep master mix source plate. Add the volumes indicated in Table 25 of each master mix to all wells of the indicated column of the plate. Keep the master mixes on ice during the aliquoting steps. The final configuration of the master mix source plate is shown in Figure 6.

Master Mix Solution	Position on Source Plate	Volume of Master Mix added per Well of Nunc Deep Well Source Plate						
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs	
RNA Seq Second Strand + End Repair Master Mix	Column 3 (A3-H3)	42.4 µL	88.5 µL	119.3 μL	165.4 µL	242.3 µL	457.5 μL	
RNA Seq dA Tailing Master Mix	Column 4 (A4-H4)	30.0 µL	50.0 μL	70.0 μL	90.0 µL	130.0 µL	260.0 μL	
Adaptor Ligation Master Mix (from Table 24)	Column 5 (A5-H5)	17.7 µL	36.9 µL	49.7 μL	68.9 µL	100.9 µL	190.6 µL	

 Table 25
 Preparation of the Master Mix Source Plate for LibraryPrep_RNASeq_ILM_v1.1.rst

3

Step 3. Prepare cDNA libraries for Illumina sequencing

NOTE

If you are using a new DeepWell plate for the Library Prep Master Mix source plate, leave columns 1 and 2 empty and add the PCR Master Mix to columns 3 to 5 of the new plate.

- Figure 6 Configuration of the master mix source plate for LibraryPrep_RNASeq_ ILM v1.1.rst
- **12** Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

13 Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles. Keep the master mix source plate on ice.

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Load the Agilent NGS Workstation

14 Load the Labware MiniHub according to Table 26, using the plate orientations shown in Figure 4.

 Table 26
 Initial MiniHub configuration for LibraryPrep_RNASeq_ILM_v1.1.rst

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty	Empty Nunc DeepWell plate	Empty Nunc DeepWell plate	Empty
Shelf 4	Empty	Empty Eppendorf twin.tec plate	Empty Eppendorf twin.tec plate	Empty
Shelf 3	Empty	Empty	Empty Eppendorf twin.tec plate	Empty
Shelf 2	Waste tip box (retained from mRNA_Purification protocol)	Nuclease-free water reservoir from step 7	AMPure XP beads in Nunc DeepWell plate from step 6	Empty
Shelf 1 (Bottom)	Clean tip box (retained from mRNA_Purification protocol)	70% ethanol reservoir from step 8	Empty	Empty tip box

3

Step 3. Prepare cDNA libraries for Illumina sequencing

15 Load the Bravo deck according to Table 27.

Table 27	Initial Bravo	deck configu	uration for L	_ibraryPrep	RNASeq	ILM v1.1.rst

Location	Content
1	Empty waste reservoir (Axygen 96 Deep Well Plate, square wells)
6	Empty Eppendorf twin.tec plate, oriented with well A1 in the upper-left
7	Purified first-strand cDNA samples in Eppendorf twin.tec plate, oriented with well A1 in the upper-left
9	Library Prep Master Mix Source Plate (Nunc DeepWell), unsealed and seated on silver insert

16 Load the BenchCel Microplate Handling Workstation according to Table 28.

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	2 Tip boxes	Empty	Empty	Empty
2	3 Tip boxes	Empty	Empty	Empty
3	4 Tip boxes	Empty	Empty	Empty
4	5 Tip boxes	Empty	Empty	Empty
6	7 Tip boxes	Empty	Empty	Empty
12	11 Tip boxes	3 Tip boxes	Empty	Empty

 Table 28
 Initial BenchCel configuration for LibraryPrep_RNASeq_ILM_v1.1.rst

Run VWorks runset LibraryPrep_RNASeq_ILM_v1.1.rst

- 17 On the SureSelect setup form, under Select Protocol to Run, select LibraryPrep_RNASeq_ILM_v1.1.rst.
- **18** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

Step 3. Prepare cDNA libraries for Illumina sequencing

19 Click **Display Initial Workstation Setup**.

20 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

21 When verification is complete, click **Run Selected Protocol**.

22 When ready to begin the run, click **OK** in the following window.

Running the LibraryPrep_RNASeq_ILM_v1.1.rst runset takes approximately 3 hours. Once complete, the purified, adaptor-ligated cDNA samples are located in the Eppendorf plate at position 7 of the Bravo deck.

Stopping Point If you do not continue to the next step, seal the plate and store at -20° C.

Step 4. Index cDNA libraries by PCR amplification

Step 4. Index cDNA libraries by PCR amplification

In this step, the Agilent NGS Workstation completes the liquid handling steps for PCR indexing of the adaptor-ligated cDNA samples in a 3-primer PCR that includes the appropriate indexing primer. After the reactions are set up by the workstation, you transfer the PCR plate to a thermal cycler for amplification. The amplification cycle number is based on the initial amount of total RNA sample used for library preparation.

Use the SureSelect Strand Specific RNA Library Prep Kit, Box 1 for this step. Thaw and mix the reagents listed in Table 29 and Table 30 below and keep on ice.

CAUTION

SureSelect Strand Specific RNA Library Prep master mixes are viscous. Mix thoroughly by vortexing before removing an aliquot for use and after combining the master mixes with other solutions.

Prepare the workstation

- 1 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **2** Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **3** Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.

Prepare the index source plate

4 Add 5 μL of the appropriate indexing primer (Index A01-H06 OR Index 1-48) to the appropriate wells of a PCR plate.

The well position for each index should correspond to the position of the RNA sample assigned to that index in the original total RNA sample plate.

CAUTION

Only use the indexing primers provided in columns 1 through 6 of the plate provided with 96 reaction kits. Provided plates also contain indexing primers in columns 7 through 12, which are used in other SureSelect protocols.

For 96 reaction kits with indexes provided in a blue plate (revised configuration), use only Indexes A01–H06 in step 4. See page 90 for a plate map.

For 96 reaction kits with indexes provided in a clear plate (original configuration), use only RNA Seq Indexes 1–48 in step 4. See page 94 for a plate map.

Step 4. Index cDNA libraries by PCR amplification

Prepare the PCR reaction mix and the master mix source plate

5 Prepare a 1:20 dilution of the RNA Seq ILM Reverse PCR Primer, according to Table 29.

T I I 00	D / '	r	•	111
lable 29	Preparatio	n of reverse	primer	dilution
			p	

Reagent	Volume for up to 96 reactions (includes excess)
Nuclease-free water	114 µL
RNA Seq ILM Reverse PCR Primer	6 µL
Total	120 µL

6 Prepare the appropriate volume of PCR Reaction Mix, according to Table 30. Mix well using a vortex mixer and keep on ice.

Table 30 Preparation of PCR Reaction Mix

SureSelect Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
RNA Seq PCR Master Mix	25.0 μL	307.5 μL	512.5 μL	717.5 μL	922.5 μL	1332.5 μL	2665 μL
Uracil DNA Glycosylase (UDG)	1.0 µL	12.3 µL	20.5 µL	28.7 μL	36.9 µL	53.3 μL	106.6 µL
SureSelect Primer (Forward primer)	1.0 µL	12.3 μL	20.5 µL	28.7 μL	36.9 µL	53.3 µL	106.6 μL
RNA Seq ILM Reverse PCR Primer (1:20 from Table 29)	1.0 µL	12.3 µL	20.5 µL	28.7 μL	36.9 µL	53.3 μL	106.6 µL
Total Volume	28 µL	344.4 μL	574.0 μL	803.6 µL	1033.2 µL	1492.4 µL	2984.8 µL

7 Using the same Nunc DeepWell master mix source plate that was used for the LibraryPrep_RNASeq_ILM_v1.1.rst run, add the volume of PCR Master Mix indicated in Table 31 to all wells of column 6 of the master mix source plate. The final configuration of the master mix source plate is shown in Figure 7.

Table 31 Preparation of the Master Mix Source Plate for TranscriptomePCR_ILM_v1.0.pro

Master Mix Solution	Position on	Volume of Master Mix added per Well of Nunc Deep Well Source Plate					
	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
PCR Reaction Mix	Column 6 (A6-H6)	39.6 µL	68.3 µL	97.0 µL	125.7 μL	183.1 μL	369.6 µL

NOTE

If you are using a new DeepWell plate for the PCR source plate, leave columns 1 to 5 empty and add the PCR Master Mix to column 6 of the new plate.

Step 4. Index cDNA libraries by PCR amplification

- Figure 7 Configuration of the master mix source plate for TranscriptomeP-CR_ILM_v1.0.pro. Columns 1-5 were used to dispense master mixes during previous protocols.
- 8 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **9** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles.

NOTE

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Step 4. Index cDNA libraries by PCR amplification

Load the Agilent NGS Workstation

10 Load the Labware MiniHub according to Table 32, using the plate orientations shown in Figure 4.

 Table 32
 Initial MiniHub configuration for TranscriptomePCR_ILM_v1.0.pro

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty	Empty	Empty	Empty
Shelf 4	Empty	Empty	Empty	Empty
Shelf 3	Empty	Empty	Empty	Empty
Shelf 2	Empty tip box	Empty	Empty	Empty
Shelf 1 (Bottom)	New tip box	Empty	Empty	Empty tip box

11 Load the Bravo deck according to Table 33.

Table 33	Initial Bravo deck	configuration for	TranscriptomePCR	ILM v1.0.pro
		J		

Location	Content
6	Indexing primers in PCR plate seated on red insert (PCR plate type must be specified on setup form under step 2)
7	Prepped cDNA samples in Eppendorf twin.tec plate, oriented with well A1 in the upper-left
9	Master mix source plate (Nunc DeepWell), unsealed and seated on silver insert

Step 4. Index cDNA libraries by PCR amplification

12 Load the BenchCel Microplate Handling Workstation according to Table 34.

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	Empty	Empty	Empty
2	1 Tip box	Empty	Empty	Empty
3	1 Tip box	Empty	Empty	Empty
4	1 Tip box	Empty	Empty	Empty
6	1 Tip box	Empty	Empty	Empty
12	1 Tip box	Empty	Empty	Empty

 Table 34
 Initial BenchCel configuration for TranscriptomePCR ILM v1.0.pro

Run VWorks protocol TranscriptomePCR_ILM_v1.0.pro

- 13 On the SureSelect setup form, under Select Protocol to Run, select TranscriptomePCR_ILM_v1.0.pro.
- **14** Under **Select PCR plate labware for Thermal Cycling**, select the specific type of PCR plate that was loaded on Bravo deck position 6. The plate type selected must be compatible with the thermal cycler to be used for amplification.
- **15** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

16 Click Display Initial Workstation Setup.

17 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

Workst	ation Setup			-
	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
Shelf 5				

18 When verification is complete, click **Run Selected Protocol**.

19 Running the TranscriptomePCR_ILM_v1.0.pro protocol takes approximately 15 minutes. Once complete, the PCR-ready samples, containing prepped DNA, PCR master mix, and indexing primer are located in the PCR plate at position 6 of the Bravo deck and you will see the following prompt:

P	late ready to seal	· Jose House	
	Seal PCR plate and run thermocycler protocol.		
	User data entry:		
	Pause and Diagnose	Continue	

- **a** Remove the PCR plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 3.0 seconds.
- **b** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate air bubbles.
- **c** Transfer the plate to the thermal cycler (with the heated lid ON) and run the program in Table 35.

Step 4. Index cDNA libraries by PCR amplification

Segment	Number of Cycles	Temperature	Time
1	1	37°C	15 minutes
2	1	95°C	2 minutes
3	10–16 cycles (see Table 36)	95°C	30 seconds
		65°C	30 seconds
		72°C	1 minute
4	1	72°C	5 minutes
5	1	4°C	Hold

Table 35 Thermal cycler program for mRNA Library PCR indexing

 Table 36
 mRNA Library PCR indexing cycle number recommendations

Amount of total RNA used for library prep	Cycle Number
50 ng–200 ng	14–16
201 ng—2 μg	12–14
2.1 µg—4 µg	10–12

NOTE

If you started with the minimum total RNA input amount of 50 ng, use 16 amplification cycles in the PCR indexing amplification program (Table 35).
Step 5. Purify amplified DNA using AMPure XP beads

In this step, the Agilent NGS Workstation transfers AMPure XP beads and amplified cDNA libraries to a Nunc DeepWell plate and then collects and washes the bead-bound DNA.

Prepare the workstation and reagents

- **1** Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a NucleoClean decontamination wipe.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **4** Let the AMPure XP beads come to room temperature for at least 30 minutes. *Do not freeze the beads at any time*.
- **5** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color.
- **6** Prepare a Nunc DeepWell source plate for the beads by adding 125 μL of homogeneous AMPure XP beads per well, for each well to be processed.
- 7 Prepare a Thermo Scientific reservoir containing 30 mL of nuclease-free water.
- 8 Prepare a separate Thermo Scientific reservoir containing 90 mL of freshly-prepared 70% ethanol.

NOTE

The reagents prepared in step 6 to step 8 above will be used for two sequential purification protocols and should be retained on the workstation at the conclusion of this protocol.

3 Sample Preparation

Step 5. Purify amplified DNA using AMPure XP beads

9 Load the Labware MiniHub according to Table 37, using the plate orientations shown in Figure 4.

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty Nunc DeepWell plate	Empty	Empty	Empty
Shelf 4	Empty	Empty	Empty	Empty
Shelf 3	Empty	Empty Eppendorf twin.tec Plate	Empty	Empty
Shelf 2	Empty	Nuclease-free water reservoir from step 7	AMPure XP beads in Nunc DeepWell plate from step 6	Empty
Shelf 1 (Bottom)	Empty	70% ethanol reservoir from step 8	Empty	Empty tip box

 Table 37
 Initial MiniHub configuration for AMPureXP_v1.1.pro:Transcriptome PCR

10 Load the Bravo deck according to Table 38.

Location	Content
1	Empty waste reservoir (Axygen 96 Deep Well Plate, square wells)
9	Amplified cDNA samples in PCR plate, unsealed and seated on red insert

(PCR plate type must be specified on setup form under step 2)

 Table 38
 Initial Bravo deck configuration for AMPureXP_v1.1.pro:Transcriptome PCR

Step 5. Purify amplified DNA using AMPure XP beads

11 Load the BenchCel Microplate Handling Workstation according to Table 39.

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	Empty	Empty	Empty
2	1 Tip box	Empty	Empty	Empty
3	2 Tip boxes	Empty	Empty	Empty
4	2 Tip boxes	Empty	Empty	Empty
6	3 Tip boxes	Empty	Empty	Empty
12	6 Tip boxes	Empty	Empty	Empty

 Table 39
 Initial BenchCel configuration for AMPureXP v1.1.pro:Transcriptome PCR

Run VWorks protocol AMPureXP_v1.1.pro:Transcriptome PCR

- 12 On the SureSelect setup form, under **Select Protocol to Run**, select **AMPureXP_v1.1.pro:Transcriptome PCR**.
- **13** Under **Select PCR plate labware for Thermal Cycling**, select the specific type of PCR plate that was loaded on Bravo deck position 9.
- **14** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

15 Click Display Initial Workstation Setup.

16 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

- M	Vorksta MiniHub	tion Setup			4
	Shelf 5	MiniHub Cassette 1	MiniHub Cassette 2	MiniHub Cassette 3	MiniH
	ShelfA	العبير بين المساهير	ا بھیر مرجو ہیں	-	

3 Sample Preparation

Step 5. Purify amplified DNA using AMPure XP beads

17 When verification is complete, click **Run Selected Protocol**.

The purification protocol takes approximately 45 minutes. When complete, the purified DNA samples are in the Eppendorf plate located on Bravo deck position 7.

Step 6. Remove adaptor-dimers using AMPure XP beads

In this step, the Agilent NGS Workstation completes a second round of purification of the amplified cDNA libraries to remove any adaptor-dimers prior to sequencing.

Prepare the workstation and reagents

- 1 Leave the purification reagents (Nunc plate containing beads and reservoirs containing water and ethanol) in cassettes 2 and 3 of the Labware MiniHub from the previous AMPureXP_v1.1.pro:Transcriptome PCR run. Otherwise, clear the remaining positions of the MiniHub and BenchCel of plates and tip boxes.
- **2** Leave the waste reservior at position 1 of the Bravo deck. Clear the remaining positions of the Bravo deck of labware.
- **3** Verify that the ThermoCube at position 9 of the Bravo deck remains set to 0°C.
- **4** Load the Labware MiniHub according to Table 40, using the plate orientations shown in Figure 4.

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Empty Nunc DeepWell plate	Empty	Empty	Empty
Shelf 4	Empty	Empty	Empty	Empty
Shelf 3	Empty	Empty Eppendorf twin.tec Plate	Empty	Empty
Shelf 2	Empty	Nuclease-free water reservoir (retained from previous protocol)	AMPure XP beads in Nunc DeepWell plate (retained from previous protocol)	Empty
Shelf 1 (Bottom)	Empty	70% ethanol reservoir (retained from previous protocol)	Empty	Empty tip box

 Table 40
 Initial MiniHub configuration for AMPureXP v1.1.pro:Transcriptome Dimers

3

3 Sample Preparation

Step 6. Remove adaptor-dimers using AMPure XP beads

5 Load the Bravo deck according to Table 41.

Table 41	Initial Bravo	deck configuration	for AMPureXP v	/1.1.pro:	Transcriptome	Dimers

Location	Content
1	Waste reservoir (Axygen 96 Deep Well Plate, square wells, retained from previous protocol)
9	Once-purified cDNA samples in Eppendorf twin.tec plate seated on red insert (full-skirted twin.tec plate type must be specified on setup form under step 2)

6 Load the BenchCel Microplate Handling Workstation according to Table 42.

Table 42	Initial BenchCel	configuration for	or AMPureXP_v1.1	.pro:Transcriptome	Dimers
----------	------------------	-------------------	------------------	--------------------	--------

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	Empty	Empty	Empty
2	1 Tip box	Empty	Empty	Empty
3	2 Tip boxes	Empty	Empty	Empty
4	2 Tip boxes	Empty	Empty	Empty
6	3 Tip boxes	Empty	Empty	Empty
12	6 Tip boxes	Empty	Empty	Empty

Run VWorks protocol AMPureXP_v1.1.pro:Transcriptome Dimers

- 7 On the SureSelect setup form, under **Select Protocol to Run**, select **AMPureXP_v1.1.pro:Transcriptome Dimers.**
- 8 Under Select PCR plate labware for Thermal Cycling, select
 96 Eppendorf Twin.tec PCR in Red Alum Insert.
 - 2) Select PCR Plate labware for Thermal Cycling

	96 ABI PCR half skirt in Red Alum Insert
3)	96 ABI PCR half skirt in Red Alum Insert
1	96 Agilent Semi-skirted PCR in Red Alum Insert
	96 Eppendorf Twin.tec half skirt PCR in Red Alum Insert
4)	96 Eppendorf Twin.tec PCR in Red Alum Insert 💦 📐

9 Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.

10 Click Display Initial Workstation Setup.

11 Verify that the NGS workstation has been set up as displayed in the Workstation Setup region of the form.

12 When verification is complete, click **Run Selected Protocol**.

The purification protocol takes approximately 45 minutes. When complete, the purified DNA samples are in the Eppendorf plate located on Bravo deck position 7.

Step 7. Assess Library DNA quantity and quality

Step 7. Assess Library DNA quantity and quality

Option 1: Analysis using the Agilent 2100 Bioanalyzer and DNA 1000 Assay

Use a Bioanalyzer DNA 1000 chip and reagent kit. For more information to do this step, see the *Agilent DNA 1000 Kit Guide*.

- **1** Set up the 2100 Bioanalyzer as instructed in the reagent kit guide.
- 2 Seal the sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **3** Vortex the plate to mix samples in each well, then centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal.
- **4** Prepare the chip, samples and ladder as instructed in the reagent kit guide, using 1 µL of each sample for the analysis.
- **5** Load the prepared chip into the 2100 Bioanalyzer and start the run within five minutes after preparation.
- **6** Measure the concentration of the library $(ng/\mu L)$ by integrating under the peak at approximately 200 to 600 bp. For accurate quantification, make sure that the concentration falls within the linear range of the assay. A sample electropherogram is shown in Figure 8.

Stopping Point If you do not continue to the next step, seal the plate and store at -20° C.

Figure 8 Analysis of amplified library DNA using a DNA 1000 assay.

Option 2: Analysis using the Agilent 2200 TapeStation and D1000 ScreenTape

Use a D1000 ScreenTape and associated reagent kit to analyze the amplified libraries. For more information to do this step, see the *Agilent 2200 TapeStation User Manual*.

- 1 Seal the DNA sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **2** Vortex the plate to mix samples in each well, then centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal.
- **3** Prepare the TapeStation samples as instructed in the *Agilent 2200 TapeStation User Manual*. Use 1 μ L of each amplified library DNA sample diluted with 3 μ L of D1000 sample buffer for the analysis.

Make sure that you thoroughly mix the combined DNA and D1000 sample buffer on a vortex mixer for 5 seconds for accurate quantitation.

4 Load the sample plate or tube strips from step 3, the D1000 ScreenTape, and loading tips into the 2200 TapeStation as instructed in the *Agilent 2200 TapeStation User Manual*. Start the run.

For each sample, measure the concentration of the library $(ng/\mu L)$ by integrating under the peak at approximately 200 to 600 bp. A sample electropherogram is shown in Figure 9.

Stopping Point If you do not continue to the next step, seal the plate and store at -20 °C.

CAUTION

Figure 9 Analysis of amplified library DNA using the Agilent 2200 TapeStation.

Step 8. Pool samples for multiplexed sequencing

Step 8. Pool samples for multiplexed sequencing

The number of indexed libraries that may be multiplexed in a single sequencing lane is determined by the output specifications of the platform used, together with the amount of sequencing data required for your research design. Calculate the number of indexes that can be combined per lane, according to the capacity of your platform and the amount of sequencing data required per sample.

1 Combine the libraries such that each index-tagged sample is present in equimolar amounts in the pool. For each library, use the formula below to determine the amount of indexed sample to use.

Volume of Index = $\frac{V(f) \times C(f)}{\# \times C(i)}$

where *V(f)* is the final desired volume of the pool,

C(f) is the desired final concentration of all the DNA in the pool

is the number of indexes, and

C(*i*) is the initial concentration of each indexed sample.

Table 43 shows an example of the amount of 4 index-tagged samples (of different concentrations) and Low TE needed for a final volume of $20 \ \mu L$ at $10 \ nM$.

Table 43 Example of indexed sample volume calculation for total volume of 20 µL

Component	V(f)	C(i)	C(f)	#	Volume to use (µL)
Sample 1	20 µL	20 nM	10 nM	4	2.5
Sample 2	20 µL	10 nM	10 nM	4	5
Sample 3	20 µL	17 nM	10 nM	4	2.9
Sample 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

2 Adjust the final volume of the pooled library to the desired final concentration.

Step 8. Pool samples for multiplexed sequencing

- If the final volume of the combined index-tagged samples is less than the desired final volume, V(f), add Low TE to bring the volume to the desired level.
- If the final volume of the combined index-tagged samples is greater than the final desired volume, V(f), lyophilize and reconstitute to the desired volume.
- **3** If you store the library before sequencing, add Tween 20 to 0.1% v/v and store at -20°C short term.

Exact library pool dilution and processing can vary based on the flow cell capacity and analysis pipeline versions being used. Refer to the appropriate Illumina user guide for instructions. Step 9. Prepare and analyze sequencing samples

Step 9. Prepare and analyze sequencing samples

Proceed to cluster amplification using the Illumina Paired-End Cluster Generation Kit; refer to the manufacturer's instructions for this step. The optimal seeding concentration for cluster amplification from SureSelect mRNA libraries is approximately 10-12 pM.

The optimal seeding concentration may vary, depending on the method used for library quantification and fragment size distribution.

This protocol has been validated with $2 \ge 100$ -base paired-end reads. However, read length can be adjusted to achieve the desired research goals.

Sequencing run setup guidelines for 8-bp indexes

Sequencing runs must be set up to perform an 8-nt index read. For the HiSeq platform, use the *Cycles* settings shown in Table 44. Cycle number settings can be specified on the *Run Configuration* screen of the instrument control software interface after choosing *Custom* from the index type selection buttons.

For complete index sequence information, see the Reference chapter starting on page 87.

Run Segment	Cycle Number
Read 1	100
Index 1 (i7)	9
Index 2 (i5)	0
Read 2	100

 Table 44
 HiSeq platform Run Configuration screen Cycle Number settings

* Settings apply to v3.0 SBS chemistry.

Sequence analysis guidelines

The SureSelect^{XT} RNA sequencing library preparation method preserves RNA strandedness as described here. The first strand of cDNA is the reverse complement of the poly(A) RNA transcript strand. Since the second strand of cDNA is eliminated before PCR, the sequence of read 1, which starts at the P5 end, matches only the first strand of cDNA. Read 2, which starts at the P7 end, matches the second strand of cDNA (the poly(A) RNA transcript strand). When running analysis of this data to determine strandedness, it is important to include this information. For example, when using the Picard tools (http://picard.sourceforge.net/) to calculate RNA sequencing metrics, it is important to include the parameter *STRAND_SPECIFICITY= SECOND_READ_TRANSCRIPTION_STRAND* to correctly calculate the strand specificity metrics.

3 Sample Preparation

Step 9. Prepare and analyze sequencing samples

4

- Reference Information for Kits with Revised Index Configuration (indexing primers in blue plate) 88
- Reference Information for Kits with Original Index Configuration (indexing primers in clear plate) 92
- Plasticware quantities for automation protocols 98

This chapter contains reference information, including component kit contents, index sequences, and plasticware requirements.

Reference Information for Kits with Revised Index Configuration (indexing primers in blue plate)

CAUTION

This chapter contains two sets of index sequence and kit content information. The first section covers kits with indexing primers supplied in Library Prep Kit p/n 5500-0135 (typically received December, 2014 or later). The second section covers kits with indexing primers supplied in Library Prep Kit 5500-0117 (typically received before December, 2014). Verify that you are referencing the information appropriate for your kit version before you proceed.

Reference Information for Kits with Revised Index Configuration (indexing primers in blue plate)

Use the reference information in this section if your kit includes Library Prep Kit p/n 5500-0135. If your kit does not include this component kit, see page 92 for kit content and indexing primer information.

Kit Contents

The SureSelect^{XT} RNA Reagent Kits contain the following component kits:

 Table 45
 SureSelect RNA-Seq Kit Content-Revised Index Configuration

Component Kits	Storage Condition	Part Number
SureSelect Strand Specific RNA Library Prep, ILM, Box 1	–20°C	5500-0135
SureSelect Strand Specific RNA Library Prep, ILM, Box 2	4°C	5190-6411

SureSelect capture libraries and reagents must be used within one year of receipt.

NOTE

The contents of each of the component kits listed in Table 45 are described in the tables below.

Kit Component	Details
RNA Seq Fragmentation Mix	bottle
RNA Seq First Strand Master Mix	tube with orange cap
RNA Seq Second-Strand + End-Repair Enzyme Mix	bottle
RNA Seq Second-Strand + End-Repair Oligo Mix	tube with yellow cap
RNA Seq dA Tailing Master Mix	bottle
SureSelect Ligation Master Mix	tube with purple cap
SureSelect Oligo Adaptor Mix	tube with blue cap
RNA Seq PCR Master Mix	bottle
Uracil DNA Glycosylase (UDG)	tube with yellow cap
SureSelect Primer	tube with brown cap
RNA Seq ILM Reverse PCR Primer	tube with black cap
RNA Seq ILM Post-capture PCR Primer*	tube with green cap
SureSelect ^{XT} Indexes, 8 bp [†]	SureSelect 8 bp Indexes A01 through H12, provided in blue 96-well plate [‡]

 Table 46
 SureSelect Strand Specific RNA Library Prep, ILM, Box 1 Content-Revised Index Configuration

* The provided SureSelect ILM Post-capture PCR Primer is not used in the workflow described in this manual. This primer is used in the SureSelect RNA Sequencing Target Enrichment workflow detailed in publication part number G9691-90020.

- † See Table 49 on page 91 for index sequences.
- ‡ See Table 48 on page 90 for a plate map. Although the provided plate contains 96 indexing primers, only indexes A01–H06 should be used for the mRNA library preparation workflow. Wells contain enough volume for two mRNA library preparation reactions per index, using the protocol on page 65.

Kit Component	Details
Oligo(dT) Microparticles	bottle
RNA Seq Bead Binding Buffer	bottle
RNA Seq Bead Washing Buffer	bottle
RNA Seq Bead Elution Buffer	bottle
Nuclease Free Water	bottle

Table 47 SureSelect Strand Specific RNA Library Prep, ILM, Box 2 Content

Table 48Plate map for SSEL 8bp Indexes A01 through H12 provided in blue plate in Library Prep kit p/n 5500-0135. Use
only indexes A01–H06 (Columns 1 to 6) for the mRNA library preparation workflow.

	1	2	3	4	5	6	7	8	9	10	11	12
A	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	A12
В	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12
C	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12
D	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12
E	E01	E02	E03	E04	E05	E06	E07	E08	E09	E10	E11	E12
F	F01	F02	F03	F04	F05	F06	F07	F08	F09	F10	F11	F12
G	G01	G02	G03	G04	G05	G06	G07	G08	G09	G10	G11	G12
н	H01	H02	H03	H04	H05	H06	H07	H08	H09	H10	H11	H12

Nucleotide Sequences of SureSelect^{XT} Indexes A01 to H12

Each index is 8 nt in length. See page 84 for sequencing run setup requirements for sequencing libraries using 8-bp indexes.

 Table 49
 SureSelect RNA Seq Indexes, for indexing primers in blue 96-well plate

Index	Sequence	Index	Sequence	Index	Sequence	Index	Sequence
A01	ATGCCTAA	A04	AACTCACC	A07	ACGTATCA	A10	AATGTTGC
B01	GAATCTGA	B04	GCTAACGA	B07	GTCTGTCA	B10	TGAAGAGA
C01	AACGTGAT	C04	CAGATCTG	C07	CTAAGGTC	C10	AGATCGCA
D01	CACTTCGA	D04	ATCCTGTA	D07	CGACACAC	D10	AAGAGATC
E01	GCCAAGAC	E04	CTGTAGCC	E07	CCGTGAGA	E10	CAACCACA
F01	GACTAGTA	F04	GCTCGGTA	F07	GTGTTCTA	F10	TGGAACAA
G01	ATTGGCTC	G04	ACACGACC	G07	CAATGGAA	G10	CCTCTATC
H01	GATGAATC	H04	AGTCACTA	H07	AGCACCTC	H10	ACAGATTC
A02	AGCAGGAA	A05	AACGCTTA	A08	CAGCGTTA	A11	CCAGTTCA
B02	GAGCTGAA	B05	GGAGAACA	B08	TAGGATGA	B11	TGGCTTCA
C02	AAACATCG	C05	CATCAAGT	C08	AGTGGTCA	C11	CGACTGGA
D02	GAGTTAGC	D05	AAGGTACA	D08	ACAGCAGA	D11	CAAGACTA
E02	CGAACTTA	E05	CGCTGATC	E08	CATACCAA	E11	CCTCCTGA
F02	GATAGACA	F05	GGTGCGAA	F08	TATCAGCA	F11	TGGTGGTA
G02	AAGGACAC	G05	CCTAATCC	G08	ATAGCGAC	G11	AACAACCA
H02	GACAGTGC	H05	CTGAGCCA	H08	ACGCTCGA	H11	AATCCGTC
A03	ATCATTCC	A06	AGCCATGC	A09	CTCAATGA	A12	CAAGGAGC
B03	GCCACATA	B06	GTACGCAA	B09	TCCGTCTA	B12	TTCACGCA
C03	ACCACTGT	C06	AGTACAAG	C09	AGGCTAAC	C12	CACCTTAC
D03	CTGGCATA	D06	ACATTGGC	D09	CCATCCTC	D12	AAGACGGA
E03	ACCTCCAA	E06	ATTGAGGA	E09	AGATGTAC	E12	ACACAGAA
F03	GCGAGTAA	F06	GTCGTAGA	F09	TCTTCACA	F12	GAACAGGC
G03	ACTATGCA	G06	AGAGTCAA	G09	CCGAAGTA	G12	AACCGAGA
H03	CGGATTGC	H06	CCGACAAC	H09	CGCATACA	H12	ACAAGCTA

Reference Information for Kits with Original Index Configuration (indexing primers in clear plate)

Reference Information for Kits with Original Index Configuration (indexing primers in clear plate)

Use the reference information in this section if your kit includes Library Prep Kit p/n 5500-0117. If your kit does not include this component kit, see page 88 for kit content and indexing primer information.

Kit Contents

The SureSelect^{XT} RNA Reagent Kits contain the following component kits:

 Table 50
 SureSelect RNA-Seq Kit Content-Original Index Configuration

Component Kits	Storage Condition	Part Number
SureSelect Strand Specific RNA Library Prep, ILM, Box 1	–20°C	5500-0117
SureSelect Strand Specific RNA Library Prep, ILM, Box 2	4°C	5190-6411

NOTE

SureSelect capture libraries and reagents must be used within one year of receipt.

The contents of each of the component kits listed in Table 50 are described in the tables below.

Kit Component	Details
RNA Seq Fragmentation Mix	bottle
RNA Seq First Strand Master Mix	tube with orange cap
RNA Seq Second Strand + End Repair Enzyme Mix	bottle
RNA Seq Second Strand + End Repair Oligo Mix	tube with yellow cap
RNA Seq dA Tailing Master Mix	bottle
SureSelect Ligation Master Mix	tube with purple cap
SureSelect Oligo Adaptor Mix	tube with blue cap
RNA Seq PCR Master Mix	bottle
Uracil DNA Glycosylase (UDG)	tube with yellow cap
SureSelect Primer	tube with brown cap
RNA Seq ILM Reverse PCR Primer	tube with black cap
RNA Seq ILM Post-capture PCR Primer [*]	tube with green cap
RNA Seq Indexes, 8 bp [†]	RNA Seq Indexes 1-96, 8 bp provided in clear 96-well plate [‡]

 Table 51
 SureSelect Strand Specific RNA Library Prep, ILM, Box 1 Content-Original Index Configuration

* The provided SureSelect ILM Post-capture PCR Primer is not used in the workflow described in this manual. This primer is used in the SureSelect RNA Sequencing Target Enrichment workflow detailed in publication part number G9691-90020.

- † See Table 54 on page 95 through Table 56 on page 97 for index sequence information.
- ‡ See Table 53 on page 94 for a plate map. Although the provided plate contains 96 RNA Seq Indexes, only Indexes 1–48 should be used for the mRNA library preparation workflow. Wells contain enough volume for two RNA library preparation reactions per index, using the protocol on page 65.

Kit Component	Details
Oligo(dT) Microparticles	bottle
RNA Seq Bead Binding Buffer	bottle
RNA Seq Bead Washing Buffer	bottle
RNA Seq Bead Elution Buffer	bottle
Nuclease Free Water	bottle

 Table 52
 SureSelect Strand Specific RNA Library Prep, ILM, Box 2 Content

Table 53Plate map for RNA Seq Indexes 1-48, 8 bp, provided in clear plate in Library Prep kit p/n 5500-0117. Use
only indexes 1–48 (Columns 1 to 6) for the mRNA library preparation workflow.

	1	2	3	4	5	6	7	8	9	10	11	12
A	Index											
	1	9	17	25	33	41	49	57	65	73	81	89
В	Index											
	2	10	18	26	34	42	50	58	66	74	82	90
C	Index											
	3	11	19	27	35	43	51	59	67	75	83	91
D	Index											
	4	12	20	28	36	44	52	60	68	76	84	92
E	Index											
	5	13	21	29	37	45	53	61	69	77	85	93
F	Index											
	6	14	22	30	38	46	54	62	70	78	86	94
G	Index											
	7	15	23	31	39	47	55	63	71	79	87	95
H	Index											
	8	16	24	32	40	48	56	64	72	80	88	96

Nucleotide Sequences of SureSelect RNA Seq Indexes-Original Kit Configuration

The nucleotide sequence of each SureSelect RNA Seq Index provided in the original kit configuration is provided in the tables below.

Refer to the sequence information below only if your kit includes Library Prep kit p/n 5500-0117, with indexing primers provided in a clear 96-well plate.

Each index is 8 nt in length. See page 84 for sequencing run setup requirements for sequencing libraries using 8-bp indexes.

Index Number	Sequence
1	AACGTGAT
2	AAACATCG
3	ATGCCTAA
4	AGTGGTCA
5	ACCACTGT
6	ACATTGGC
7	CAGATCTG
8	CATCAAGT
9	CGCTGATC
10	ACAAGCTA
11	CTGTAGCC
12	AGTACAAG
13	AACAACCA
14	AACCGAGA
15	AACGCTTA
16	AAGACGGA

 Table 54
 SureSelect RNA Seq Indexes 1-16

4

Nucleotide Sequences of SureSelect RNA Seq Indexes-Original Kit Configuration

Index Number	Sequence
17	AAGGTACA
18	ACACAGAA
19	ACAGCAGA
20	ACCTCCAA
21	ACGCTCGA
22	ACGTATCA
23	ACTATGCA
24	AGAGTCAA
25	AGATCGCA
26	AGCAGGAA
27	AGTCACTA
28	ATCCTGTA
29	ATTGAGGA
30	CAACCACA
31	CAAGACTA
32	CAATGGAA

Table 55SureSelect RNA Seq Indexes 17-32

Nucleotide Sequences of SureSelect RNA Seq Indexes-Original Kit Configuration

Index Number	Sequence
33	CACTTCGA
34	CAGCGTTA
35	САТАССАА
36	CCAGTTCA
37	CCGAAGTA
38	CCGTGAGA
39	CCTCCTGA
40	CGAACTTA
41	CGACTGGA
42	CGCATACA
43	CTCAATGA
44	CTGAGCCA
45	CTGGCATA
46	GAATCTGA
47	GACTAGTA
48	GAGCTGAA

 Table 56
 SureSelect RNA Seq Indexes 33-48

Plasticware quantities for automation protocols

Plasticware quantities for automation protocols

The tables below show the quantity of each plasticware type used in each automation protocol in the workflow. Quantities listed in the tables only include unique labware that was not used in other protocols or runsets. For example, Nunc DeepWell master mix plates may be reused in multiple protocols but are counted below only where first used.

mRNA	Purifica	tion	v1.0.	pro
		_		

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	2	3	4	4	6	10
Empty tip boxes (for waste tips)	2	2	2	2	2	2
Nunc DeepWell Plates	5	5	5	5	5	5
96 Eppendorf twin.tec full-skirt plates	3	3	3	3	3	3
PCR plates (compatible with thermal cycler)	4	4	4	4	4	4
Axygen square-well plate (waste)	1	1	1	1	1	1

AMPureXP_v1.1.pro:First Strand

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	1	1	2	2	3	6
Empty tip boxes (for waste tips)	1	1	1	1	1	1
Nunc DeepWell Plates	2	2	2	2	2	2
96 Eppendorf twin.tec full-skirt plates	1	1	1	1	1	1
Thermo Scientific Reservoirs	2	2	2	2	2	2
Axygen square-well plate (waste)	1	1	1	1	1	1

Plasticware quantities for automation protocols

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	2	3	4	5	7	14
Empty tip boxes (for waste tips)	1	1	1	1	1	1
Nunc DeepWell Plates	3	3	3	3	3	3
96 Eppendorf twin.tec full-skirt plates	4	4	4	4	4	4
Thermo Scientific Reservoirs	2	2	2	2	2	2
Axygen square-well plate (waste)	1	1	1	1	1	1

LibraryPrep_RNASeq_ILM_v1.1.rst

TranscriptomePCR_ILM_v1.0.pro

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	2	2	2	2	2	2
Empty tip boxes (for waste tips)	2	2	2	2	2	2
PCR plates (compatible with thermal cycler)	1	1	1	1	1	1

AMPureXP_v1.1.pro:Transcriptome PCR

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	1	1	2	2	3	6
Empty tip boxes (for waste tips)	1	1	1	1	1	1
Nunc DeepWell Plates	2	2	2	2	2	2
96 Eppendorf twin.tec full-skirt plates	1	1	1	1	1	1
Thermo Scientific Reservoirs	2	2	2	2	2	2
Axygen square-well plate (waste)	1	1	1	1	1	1

Plasticware quantities for automation protocols

AWFUTEAF VI.I.pro.iraliscriptolile Dillers	AMPureXP	v1.1.pro:Tra	inscriptome	Dimers
--	----------	--------------	-------------	--------

Labware	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Tip boxes (filled)	1	1	2	2	3	6
Empty tip boxes (for waste tips)	1	1	1	1	1	1
Nunc DeepWell Plates	1	1	1	1	1	1
96 Eppendorf twin.tec full-skirt plates	1	1	1	1	1	1

www.agilent.com

In This Book

This guide contains information to run the SureSelect Automated Strand-Specific RNA Library Prep protocol using the Agilent NGS Workstation.

© Agilent Technologies, Inc. 2015

Version D0, July 2015

G9691-90030

