

ICP-QQQ-MS for the accurate determination of S in organic matrices

Lieve Balcaen, Glenn Woods, Martín Resano and Frank Vanhaecke

> Agilent Spectroscopy Days 11th & 12th of June 2013

gilent Technologies

Introduction

XSeries II

FACULTEIT WETENSCHAPPEN

and and a

Q-ICP-MS

Introduction

Agilent 8800 ICP-QQQ

Atomic and Mass Spectrometry

Spectro MS Mattauch-Herzog ICP-MS

Element XR SF-ICP-MS

Neptune MC-ICP-MS

ONE OF OUR RESEARCH PROJECTS...

- Pharmaceutical research
 - metabolism study:
 - ➔ Chromatographic separation of metabolites
 - ➔ Quantification of metabolites bound to glutathione (via S)

HPLC-ICP-MS

Introduction

- Separation of metabolites: reversed-phase HPLC
 - ▶ Gradient elution: 95% $NH_4Ac \rightarrow 90\% CH_3OH$
- Quantification: ICP-MS
 - Calibration: online isotope dilution
 - → interference-free determination of ³²S and ³⁴S
 - → quadrupole ICP-MS: spectral interferences

SPECTRAL INTERFERENCES

Analyte	Abundance (%)	lons causing spectral interference
³² S+	95.04	¹⁶ O ¹⁶ O ⁺ , ¹⁴ N ¹⁸ O ⁺ , ¹⁵ N ¹⁶ O ¹ H ⁺
³³ S+	0.75	³² S ¹ H ⁺ , ¹⁶ O ¹⁶ O ¹ H ⁺ , ¹⁶ O ¹⁷ O ⁺ , ¹⁵ N ¹⁸ O ⁺ , ¹⁴ N ¹⁸ O ¹ H ⁺
³⁴ S+	4.20	³³ S ¹ H ⁺ , ¹⁶ O ¹⁸ O ⁺

→ quadrupole ICP-MS with reaction/collision cell:

 $S^+ \rightarrow SO^+$

SPECTRAL INTERFERENCES

Analyte	Abundance (%)	lons causing spectral interference
³² S ¹⁶ O+	95.04	⁴⁸ Ti+, ⁴⁸ Ca+, ³⁶ Ar ¹² C+
³³ S ¹⁶ O+	0.75	⁴⁹ Ti+, ³² S ¹⁷ O+
³⁴ S ¹⁶ O+	4.20	⁵⁰ Ti ⁺ , ⁵⁰ Cr ⁺ , ⁵⁰ V ⁺ , ³⁸ Ar ¹² C ⁺ , ³⁶ Ar ¹⁴ N ⁺ , ³² S ¹⁸ O ⁺ , ³³ S ¹⁷ O ⁺

→ ICP-DRC-Q-MS only partial solution

(use of sector field – ICP – MS (more expensive – less robust))

2012: AGILENT 8800 ICP-QQQ

ICP-QQQ

AGILENT 8800

• S⁺ \rightarrow SO⁺ - S detection at m/z=48 and 50

ICP-QQQ

• MS/MS mode: avoid interferences on m/z= 48 and 50 ?

DETERMINATION of S in pure ETHANOL

- S standards in pure ethanol (0 to 850 μ g L⁻¹ S)
 - Spray chamber : 5 °C
 - 1 mm i.d. injector (standard: 2.5 mm)
 - ► O₂ (20% in Ar) to avoid carbon build-up
 - O₂ reaction gas: optimization of gas flow

OPTIMIZATION REACTION GAS FLOW (O₂)

CALIBRATION CURVES - standard mode

• 3 MODES: 'ion guide' mode (single-Q ~ Q1: ion guide ~ no reaction) 48Ca+/48Ti+ 36Ar12C+ 33S+/34S+ 48Ca+/48Ti+ 36Ar12C+ 33S+/34S+ $16O_2^+$ $16O_2^+$ 32S+ 32**S**+ ion guide m/z = 32

CALIBRATION CURVES – bandpass mode

- 3 MODES:
 - 'ion guide' mode (single-Q ~ Q1: ion guide ~ no reaction)
 - 'bandpass' mode (single-Q ~ Q1: bandpass filter ~ reaction)

CALIBRATION CURVES – MS/MS mode

- 3 MODES:
 - 'ion guide' mode (single-Q ~ Q1: ion guide ~ no reaction)
 - 'bandpass' mode (single-Q ~ Q1: bandpass filter ~ reaction)
 - 'MS/MS' mode (triple-Q ~ Q1: precursor ion mass ~ reaction)

COMPARISON BANDPASS & MS/MS MODE

mass (amu)

COMPARISON BANDPASS & MS/MS MODE

LET'S MAKE LIFE EVEN MORE COMPLEX...

• Matrix: Ethanol + 50 μ g.L⁻¹ Ca + Ti

LET'S MAKE LIFE EVEN MORE COMPLEX...

• Matrix: Ethanol + 50 μ g.L⁻¹ Ca + Ti

LIMIT OF DETECTION (LOD)

LOD (µg.L ⁻¹)	³² S	³³ S	³⁴ S			
MS/MS (s (external))	4	3	6			
MS/MS (s (internal))	0.4	5	1.6			
Literature values						
reaction cell ICP-MS	10 - 100		300			
sector field ICP-MS	1		2			

VALIDATION: Analysis of SRM 2773 biodiesel

- NIST SRM 2773: animal-based biodiesel
 - Isotope dilution for calibration
 - Simple dilution with ethanol
- Sample preparation:
 - ~ 1 g biodiesel

~ 0.2 g ³⁴S spike (0,711 µg mol^{-1 34}S)

24 mL ethanol

Validation

VALIDATION: Analysis of SRM 2773 biodiesel

Parameter	Value	
RF power	1450 W	
Carrier gas flow rate	0.98 L min ⁻¹	
O ₂ option gas flow rate	75 mL min ⁻¹	
Spray chamber temp.	- 5 °C	
O ₂ reaction gas flow rate	0.4 mL min ⁻¹	
Q1 bias	- 2 V	
Octopole bias	- 9V	
Q2 bias	- 18V	

VALIDATION: Analysis of SRM 2773 biodiesel

Q1: *m*/*z* = 32 / 34 ~ Q2: *m*/*z* = 48 / 50

	Concentration	Certified value
SRM 2773 – 1	7.234 mg g ⁻¹	
SRM 2773 – 2	7.227 mg g ⁻¹	
SRM 2773 – 3	7.231 mg g ⁻¹	
Average	7.231 mg g⁻¹	7.39 ± 0.39 mg g ⁻¹
S	0.003 mg g ⁻¹	
95% CI	7.231 ± 0.015 mg g ⁻¹	

CONCLUSIONS

- Analysis of organic matrices is possible
- Almost interference-free determination of ³²S, ³³S and ³⁴S, independent of the matrix
- Accurate results obtained for a biodiesel SRM
- Flexible, all-round instrument
 - "normal" quadrupole-based ICP-MS
 - large range of possibilities to deal with interferences

