A Comparative Study of Common Urine Sample Preparation Techniques of a Comprehensive Panel of Pain Management Drugs by LC/MS Analysis for Forensic Toxicology **MSACL 2012**

Peter JW Stone and Kevin McCann, Agilent Technologies Inc., 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA.

Introduction

There are two common techniques to pre-treat urine samples for the LC/MS analysis of large panels in forensic toxicology: 'dilute and shoot' (D&S) and solid phase extraction (SPE.) Both are widely used, but each has its' own advantages and disadvantages. This research project compares and contrasts these sample preparation approaches using a comprehensive and rapid targeted LC/MS analysis method of a panel of over 65 compounds extracted from urine samples. The recovery results from several batches are reported. SPE cleanup/extraction methods are based upon the Plexa PCX phase cartridges and the methodology is reported. D&S techniques are based on a 1/10 dilution in de-ionized water.

Sample Preparation

Step 1: Glucuronide hydrolysis

1ml urine + 10µl of ß-glucuronidase

Note: need 1,000 units per ml of urine; β-glucuronidase was ≥100,000 units/ml, so using at least 1,000 units per ml

Step 2: SPE (Agilent Plexa PCX – 30mg)			
Sample	0.2ml urine		
Pre-treatment	Dilute with KH ₂ PO ₄		
SPE Conditioning	0.5ml MeOH 0.5ml H ₂ O		
SPE Wash	0.5ml 50% MeOH in H ₂ 0 Dry under vacuum for 5 minutes		
Elution	0.5 ml EtAc:MeOH:NH ₃ OH		
Step 3: Sample reconstitution			

Sample were evaporated to ~200µl, then 100µl of 0.2%HCl in MeOH was added. Samples were then evaporated to dryness and reconstituted in 100µl of 0.01% formic acid for injection.

Table 1. Solid Phase Extraction (SPE) procedure.

Step 1: Glucuronide hydrolysis			
1ml urine + 10μl of β-glucuronidase Note: need 1,000 units per ml of urine; β-glucuronidase was ≥100,000 units/ml, so using at least 1,000 units per ml			
Step 2: 1:10 Dilution			
Sample	0.1ml urine		
Dilution	Add 0.9ml H ₂ O		
Filtering	2,500rpm for 20 minutes using 3K mass cut- off filter		
Step 3: Sample transfer			
Transfer filtered and diluted urine to autosampler for injection			

Iransfer filtered and diluted urine to autosampler for injection.

Table 2. Dilute and Shoot (D&S) procedure.

Instrument Parameters

Sample Information

65+ forensic analytes that respond in positive MS polarity were spiked at a concentrations of 100ng/ml into several clean urine matrix batches.

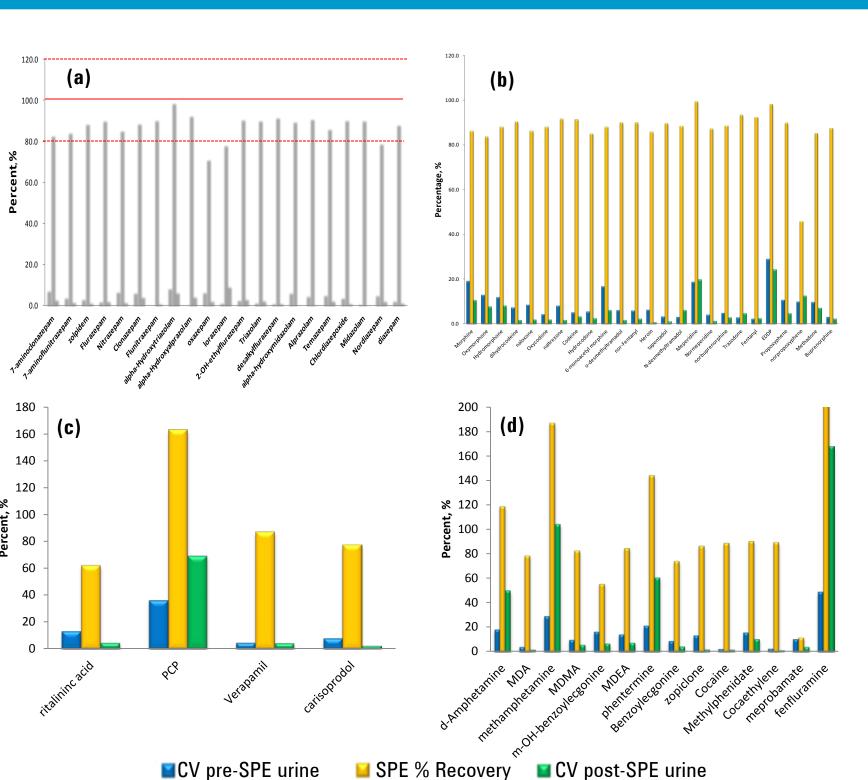
HPLC Parameters

Agilent 1260 HPLC binary pump, well plate sampler with thermostat, temperature-controlled column compartment

Parameter	Value	
Column	Zorbax Poroshell EC-C18, 2.1 x 100mm, 2.7µm	
Column Temp	55°C	
Injection Volume	1µI (SPE), 10µI (D&S)	
Autosampler	4°C	
Needle Wash	Flushport, 5 seconds	
Mobile Phase A	NH ₄ OH + Formic Acid in H ₂ O	
Mobile Phase B	Formic Acid in Acetonitrile	
Flow Rate	0.5 ml/min	
Table 3. LC parameters		

Mass Spectrometer Parameters Agilent 6420 QqQ Mass Spectrometer

Ion Source Conditions			
Ion Mode	ESI +		
Capillary Voltage	2000 V		
Drying Gas (N ₂)	12 L/min		
Drying Gas Temp	350°C		
Nebulizer Gas (N ₂)	50 psi		
Δ EMV	0 V		
Dwell Time	dynamic		
Table 4. Mass spectrometer parameters			


Dynamic MRM

Dynamic MRM allows a mass spectrometer to acquire select MRM data during a specified retention time window, decreasing the number of ion transitions being monitored simultaneously. Cycle time is kept consistent to keep an even distribution of data points and ensure accurate quantitation.

Parameter	Value	
Cycle Time	330 ms	
Total MRMs	174	
Max Concurrent MRMs	31	
Retention Time Window	30 sec	
Min/Max Dwell Time	7.5/161.5 ms	
Q1/Q2 Resolution	0.7 amu	
Table 5. Dynamic MRM parameters		

Analyte

Morphin Codeine Hydroco MDMA Nor-Fen Heroin Methylpl

SPE Recovery Data

Figure 1. SPE recovery data for Sedatives (a), Opiates/Opioids (b), Drugs of Abuse (c) and Stimulants (d).

Column Stability for 3000x D&S Urine Samples

Zorbax Poroshell 120 EC-C18 column stability results for various analytes picked out Randomly throughout the course of 6min analysis . Stability is expressed in Retention Time %RSD.

)	%RSD	Analyte	%RSD	Analyte	%RSD
ne	0.7	Mepreridine	0.4	Triazolam	0.0
е	0.4	Zolpidem	0.3	Naltrexone	0.1
odone	0.4	Fentanyl	0.1	Chlordiazepoxide	0.1
	0.3	EDDP	0.1	Dexmethyldiazepam	0.1
ntanyl	0.2	Nitrazepam	0.1	Cocaethylene	0.2
	0.2	Propoxephine	0.1	11-nor-9-carboxy- Δ 9-	0.0
phenidate	0.2	Buprenorphine	0.3	THC	

Table 6. Retention time stability for 3000 D&S injections on a single Poroshell Column

6420 Sensitivity Results: D&S vs SPE Sample Preparation

Compound

6-monoacetyl morphine buprenorphine codeine dihydrododeine EDDP fentanyl heroin hydrocodone hydromorphone meperidine methadone morphine naloxone naltrexone N-desmethyltramadol norbuprenorphine norfentanyl normeperidine norpropoxyphene o-desmethyltramadol oxycodone oxymorphone propoxyphene tapentadol tramadol Trazodone Table 7. D&S vs. SPE LOQ

Compound

amphetamine benzoylecgonine cocaethylene cocaine fenfluramine MDA MDEA MDMA meprobamate methamphetamine methylphenidate m-OH-benzoylecgonine phentermine zopiclone
 Table 8. D&S vs. SPE LOQ for Stimulants

Poster # 2

LLOQ	LOQ (ng/ml) ULOQ		Compound	LL00 (LLOQ (ng/ml)	
D&S	SPE	(ng/ml)	Compound	D&S	SPE	(ng/ml)
10	<1	1000	2-OH-ethylflurazepam	200	5	1000
10	1	1000	7-aminoclonazepam	10	<1	1000
25	<1	1000	7-aminoflunitrazepam	5	<1	1000
25	<1	1000	alpha-OH-midazolam	10	<1	1000
10	<1	1000	alprazolam	10	<1	1000
1	<1	1000	a-OH-alprazolam	20	<1	1000
10	<1	1000	a-OH-triazolam	50	<1	1000
10	<1	1000	chlordiazepoxide	10	<1	1000
5	<1	1000	clonazepam	25 to 50	<1	1000
5	<1	1000	desalkylflurazepam	20	1	1000
10	<1	1000	diazepam	10	<1	1000
5	<1	1000	flunitrazepam	10	1	500
5	<1	1000	flurazepam	5	1	1000
10	<1	1000	lorazepam	50	20	1000
10	1	1000	midazolam	10	<1	1000
25	3	1000	nitrazepam	25	5	1000
1	<1	1000	nordiazepam	25	<1	1000
5	<1	1000	oxazepam	50	25	1000
5	<1	1000	temazepam	25	<1	1000
5	<1	1000	triazolam	5	<1	1000
10	<1	1000	zolpidem	5	<1	1000
5	<1	1000	Table 9. D&S vs. SPE L	00 for Sec		
5	<1	1000				
5	<1	1000		1100	(ng /ml)	

Compound	LL00 (ULOQ		
Compound	D&S	SPE	(ng/ml)	
11-nor-9-carboxy-THC	-	25	-	
carisoprodol	5	1	1000	
РСР	1	<1	1000	
ritalinic acid	5	1	1000	
verapamil	2	<1	1000	
Table 10 D&S vs. SPE LOO for Drugs of Abuse				

Table 10. D&S vs. SPE LUU for Drugs of Abuse

Conclusions

SPE recoveries for 90% of all analytes in the comprehensive panel were within $\pm 20\%$ of full recovery. In general, SPE sample preparation yielded more sensitive results for LLOO than Dilute & Shoot approaches. Zorbax Poroshell 120 EC-C18 Column lifetime was outstanding, with little degradation in performance after 3000x Dilute & Shoot urine samples injected. Both sample preparation approaches are appropriate for Agilent 6420/30/60 QqQ systems to achieve typical linear ranges and sensitivity requirements.

for Opiates/Opioids				
LLOQ (ULOQ			
D&S	SPE	(ng/ml)		
5	<1	1000		
5	<1	1000		
5	<1	1000		
5	<1	1000		
1	<1	1000		
5	<1	1000		
1	<1	1000		
5	<1	1000		
10	5	1000		
1	<1	1000		
5	<1	1000		
10	<1	1000		
1	<1	1000		
5	<1	1000		

<1

<1

1000

1000