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Combination of Chemical lonization
(Cl) and Low Energy lonization (El)
Capabilities with High-Resolution
Q-TOF GC/MS

Introduction

Important applications for high-resolution gas chromatography mass spectrometer
(GC/MS) systems include untargeted screening approaches as well as unknown
compound identification. For many classes of compounds, low energy electron
ionization (El) provides significant improvements in the relative abundance of
molecular ions compared to standard (70 eV) El, and enables enhancement in
selectivity and compound identification capability without any down time due to
changing the ion source or additional tuning. However, there is still an opportunity
for alternative ionization sources as a complimentary technique (that is, chemical
ionization), combined with high-resolution GC/MS, predominantly for selected
compounds of environmental significance. In this work, a comparison of low energy
El and chemical ionization (Cl) data acquired on the Agilent 7250 GC/Q-TOF will be
reviewed.



Experimental

All experiments were performed using
an Agilent 7890B GC system coupled to
a high-resolution Agilent 7250 GC/Q-TOF
equipped with a low-energy-capable El

source and an interchangeable Cl source.

The data were collected in both El
modes, as well as positive and negative
Cl modes (PCl and NCI), with methane
as a reagent gas. Selected groups

of compounds included chlorinated
phenols, nitroaromatics, and pesticides,
among others. Table 1 lists typical MS
parameters.

The GC separation was done on a

30 mx 0.25mmid, 0.25 ym HP-5MS
capillary column using He as the

carrier gas at 1.2 mL/min. The injector
temperature and the MS interface were
set at 280 °C. Methane (99.995 %) was
used as the reagent gas. The methane
flow was set to 20 % for PCI, and

40 % for NCI. For NCI, the source and
quadrupole temperatures were set to
150 °C. For PCl, the source temperature
was set to 280 °C and the quadrupole
temperature to 150 °C. The spectral data
were acquired at 5 Hz, and the mass
range was 501,200 m/z. 2H-Perfluoro-
5,8-dimethyl-3,6,9-trioxa-dodecane
(PFDTD) was used to tune the mass
spectrometer in the Cl mode.

Data analysis was performed using
Agilent MassHunter Qualitative
Analysis software version B.08 as well
as MassHunter Quantitative Analysis
software version B.09.

The limit of detection (LOD) for

both negative and positive Cl were

statistically derived

repetitive injections of benzophenone
and octofluoronaphthalene (OFN),
respectively. In PCI mode, the LOD
was calculated based on 10 pg/uL

based on

benzophenone injections, and was
estimated to be 3.4 pg on-column. For
NCI, the LOD was calculated based on
the injections of 10 and 1 fg/uL OFN,

and was estimated to be 2.3 and 0.5 fg
on-column, respectively. Figure T shows

examples of EICs for OFN.

Table 1. GC/Q-TOF MS acquisition parameters. The source temperature was chosen
separately for each experiment based on the compound group and ionization mode.
Emission current was optimized for each electron energy.

lonization mode Standard El Low energy El Positive CI Negative CI
Electron energy 70 eV 9-17 eV 110 eV 70-200 eV
Emission current 5pA 0.3-1 pA 150 pA 50-130 pA
Source temperature 200-280 °C 200 °C 280 °C 150 °C
Mass range 50-1,200 m/z
Spectral acquisition rate 5Hz
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Figure 1. EICs for the molecular ion of OFN (1-100 fg on-column)
inNCI, 271.9878 +20 ppm.




Results and discussion

Low-electron-energy-capable El
versus positive Cl

To confirm fundamental Cl performance,
the functionality of the interchangeable
Cl source was evaluated with traditional
positive and negative Cl checkout
compounds. Then, fragmentation
patterns of different compound classes
of interest were compared between El
(standard, 70 eV, and low energy) and Cl
modes (Figure 2).

While some compounds form a
significant (M+H)* ion as well as
methane adducts in PCI, others showed
higher degrees of fragmentation in PClI
compared to low energy El (Figure 2).
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Figure 2. Fragmentation examples of spectra obtained in standard and low energy El, compared to PCI.

The molecular ion is indicated

by a blue square.
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Figure 3. A) A significant decrease in fragmentation with a concentration of the relative abundance in the
molecular ion or characteristic fragment ions is typically observed for pyrethroid, organochlorine, and
organophosphate pesticides. B) This trend is also typical for nitroaromatic compounds.



Identification of cis versus trans
stereoisomers of various conazoles
Stereoisomers of etaconazole,
propiconazole, and difeno-conazole
were investigated using negative ClI.
These compounds have two chiral
centers at the 2- and 4-positions on the
dioxolane ring, existing as two pairs of
diastereoisomers (cis and trans), and two
pairs of enantiomers that require chiral
columns for separation.

As shown in Figure 4, NCI has a different
fragmentation mechanism than El. The
El mechanism is through elimination

of the triazole ring (C,H,N,) to form

a stable tertiary ion at m/z 259.0289
(C,,H,,0,Cl,), followed by the opening of
the 1,3-dioxolane ring and elimination of
the side chain to form an abundant ion
atm/z 172.9555 (C,H,0Cl,). In contrast,
the NCI spectra of the cis and trans
isomers are quite different, making it
possible to uniquely identify them. For
the cis isomers, the most abundant peak
in the spectra of eta- and propiconazole
is the ion at m/z 126.0309 (C,H,N,0,),
corresponding to the elimination of the
dichlorophenyl group as well as the side
chain including carbons 4 and 5 on the

1,3-dioxolane ring.

Table 2. LOD for pesticides analyzed in NCI spiked to the broccoli extract. Injection volume 1 pL.

Compound LOD (pg) Compound LOD (pg)
Trifluralin 1.6 Chlorfenvinphos 1.6
Dicloran 1.1 Methidathion 2.9
BHC-gamma (Lindane) 1.6 Tetrachlorvinphos 1.9
Fonofos 0.9 Endosulfan 1.1
Tefluthrin 1.1 Prothiofos 1.4
Parathion-methyl 1.7 Dieldrin 1.4
Chlorpyrifos-methyl 17 Ethion 12
Heptachlor 1.4 Endosulfansulfate 1.4
Fenitrothion 1.5 Bifenthrin 1.4
Malathion 13 Tetradifon 1.0
Aldrin 1.4 Phosalone 1.5
Chlorpyrifos 12 Cyhalothrin (lambda) 1.3
Parathion 1.2 Pyrazophos 24
Pendimethalin 1.4 Cypermethrin | 2.8
Heptachlor exo-epoxide isomer B 13 Flucythrinatel 1.0
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Figure 4. NCI spectra of cis and trans propiconazole (A and B) and the El spectra of the same cis and
trans stereoisomers (C and D).



The presence of the phenoxy group

in cis difenoconazole stabilizes the
molecular ion somewhat, thus leading
to the formation of the fragment ion

at m/z 310.038943 (C, .H,N.O,ClI).

For the trans conazoles, the most
abundant ions were at m/z 256.004991
(C,,H;N,OCl,) for eta- and propiconazole,

100 '8

and m/z 348.031206 (C,,H,,N,0,Cl,)

for difenoconazole due to the additional
phenoxy ring; these ions correspond to
the elimination of the side chain attached
to the 1,3-dioxolane ring. Table 3 gives
the mass accuracy and % abundance

of the molecular ions for the cis
stereoisomers. The relative abundances
of the negative molecular ions (M") for

the trans stereoisomers are below 4 %.

Conclusions

The benefits of the 7250 GC/Q-TOF
system equipped with a low
energy-capable El source as well as
an interchangeable Cl source provide
a unigue combination of performance
factors for targeted and untargeted
analysis applications.

Chemical ionization alone or in
combination with low energy El and a
high-resolution GC/Q-TOF provides new
opportunities in compound identification.
The ability of low energy El to provide
accessible molecular ion information on
the 7250 GC/Q-TOF is complimented
by an interchangeable Cl source for

an additional degree of confidence

in molecular ion determination for
compound identification workflows.
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Figure 5. NCl spectra of cis and trans etaconazole (A and B) and difenoconazole (C and D).

Table 3. Mass accuracy data for the cis/trans conazole stereoisomers and the % abundances of
the molecular ions of the cis stereoisomers.

cis trans M-
Mass error Mass error
exp. m/z (ppm) exp. m/z (ppm) cis % Abundance
Etaconazole 126.030785 0.9 256.00515 0.6 327.0551 20
Propiconazole 126.030726 -1.4 256.00513 0.5 341.0704 29
Difenoconazole 126.030736 1.3 310.03894 0.2 405.0644 24
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